Стандартная ошибка регрессии увеличивается

На
основании уравнения (3.20) можно показать,
что b
будет несмещенной оценкой

,
если выполняется 4-е условие Гаусса —
Маркова:

(3.21)

так
как

— константа. Если мы примем сильную форму
4-го условия Гаусса — Маркова и предположим,
что х — неслучайная величина, мы можем
также считать Var(x)
известной константой и, таким образом,

(3.22)

Далее,
если х — неслучайная величина, то
M{Cov(x,u)}
= 0 и, следовательно, M{b}
=

Таким
образом,

— несмещенная оценка

Можно получить тот же результат со
слабой формой 4-го условия Гаусса —
Маркова (которая допускает, что переменная
х имеет случайную ошибку, но предполагает,
что она распределена независимо от u
).

За
исключением того случая, когда случайные
факторы в n
наблюдениях в точности «гасят»
друг друга, что может произойти лишь
при случайном совпадении, b
будет отличаться от

в каждом конкретном эксперименте. Не
будет систематической ошибки, завышающей
или занижающей оценку. То же самое
справедливо и для коэффициента а.

Используем
уравнение (2.15):

(3.23)

Следовательно,

(3.24)

Поскольку
у определяется уравнением (3.1),

(3.25)

так
как M{u}=0,
если выполнено 1-е условие Гаусса —
Маркова. Следовательно

(3.26)

Подставив
это выражение в (3.24) и воспользовавшись
тем, что

получим:

(3.27)

Таким
образом, а
— это несмещенная оценка а при условии
выполнения 1-го и 4-го условий Гаусса —
Маркова. Безусловно, для любой конкретной
выборки фактор случайности приведет к
расхождению оценки и истинного значения.

Рассмотрим
теперь теоретические дисперсии оценок
а и Ь. Они задаются следующими выражениями
(доказательства для эквивалентных
выражений можно найти в работе Дж. Томаса
[Thomas,
1983, section
833]):

(3.28)

Из
уравнения 3.28 можно сделать три очевидных
заключения. Во-первых, дисперсии а
и b
прямо пропорциональны дисперсии
остаточного члена

.

Чем
больше фактор случайности, тем хуже
будут оценки при прочих равных условиях.
Это уже было проиллюстрировано в
экспериментах по методу Монте-Карло.
Оценки в серии II
были гораздо более неточными, чем в
серии I,
и это произошло потому, что в каждой
выборке мы удвоили случайный член.
Удвоив u,
мы удвоили его стандартное отклонение
и, следовательно, удвоили стандартные
отклонения a
и b.
Во вторых, чем больше число наблюдений,
тем меньше дисперсионных оценок. Это
также имеет определенный смысл. Чем
большей информацией вы располагаете,
тем более точными, вероятно, будут ваши
оценки. В третьих, чем больше дисперсия

,
тем меньше будет дисперсия коэффициентов
регрессии. В чем причина этого? Напомним,
что (I)
коэффициенты регрессии вычисляются на
основании предположения, что наблюдаемые
изменения

происходят вследствие изменений

,
но (2) в действительности они лишь отчасти
вызваны изменениями

,
а отчасти вариациями u.
Чем меньше дисперсия

,
тем больше, вероятно, будет относительное
влияние фактора случайности при
определении отклонений

и тем более вероятно, что регрессионный
анализ может оказаться неверным. В
действительности, как видно из уравнения
(3.28), важное значение имеет не абсолютная,
а относительная величина

и Var(x).

На
практике мы не можем вычислить
теоретические дисперсии

или

,
так как

неизвестно, однако мы можем получить
оценку

на основе остатков. Очевидно, что разброс
остатков относительно линии регрессии
будет отражать неизвестный разброс u
относительно линии

,
хотя в общем остаток и случайный член
в любом данном наблюдении не равны друг
другу. Следовательно, выборочная
дисперсия остатков Var(е),
которую мы можем измерить, сможет быть
использована для оценки

,
которую мы получить не можем.

Прежде
чем пойти дальше, задайте себе следующий
вопрос: какая прямая будет ближе к
точкам, представляющим собой выборку
наблюдений по

и

,
истинная прямая

или линия регрессии

?
Ответ будет таков: линия регрессии,
потому что по определению она строится
таким образом, чтобы свести к минимуму
сумму квадратов расстояний между ней
и значениями наблюдений. Следовательно,
разброс остатков у нее меньше, чем
разброс значений u,
и Var(e)
имеет тенденцию занижать оценку

.
Действительно, можно показать, что
математическое ожидание Var(e),
если имеется всего одна независимая
переменная, равно

.
Однако отсюда следует, что если определить

как


,
(3.29)

То

будет представлять собой несмещенную
оценку

.

Таким
образом, несмещенной оценкой параметра
регрессии

является оценка


.
(3.30)

Теперь
вспомним следующие определения:

стандартное
отклонение случайной величины

– корень квадратный из теоретической
дисперсии случайной величины; среднее
ожидаемое расстояние между наблюдениями
этой случайной величины и ее математическим
ожиданием,

стандартная
ошибка случайной величины

– оценка стандартного отклонения
случайной величины, полученная по данным
выборки.

Используя
уравнения (3.28) и (3.29), можно получить
оценки теоретических дисперсий для a
и b
и после извлечения квадратного корня
– оценки их стандартных отклонений.
Вместо слишком громоздкого термина
«оценка стандартного отклонения функции
плотности вероятости» коэффицинта
регрессии будем использовать термин
«стандартная ошибка» коэффициента
регрессии, которую в дальнейшем мы будем
обозначать в виде сокрашения «с.о.».
Таким образом, для парного регрессионного
анализа мы имеем:

и

(3.31)

Если
воспользоваться компьютерной программой
оценивания регрессии, то стандартные
ошибки будут подсчитаны автоматически
одновременно с оценками a
и b.

Подводя
итог сказанному о точности коэффициентов
регрессии, акценктируем внимание на
следующих выводах.

1.
Оценка a
для параметра

имеет нормальное распределение с
математическим ожиданием a
и стандартным отклонением

,
оценка b
для параметра

имеет
нормальное распределение с математическим
ожиданием b
и стандартным отклонением

.

2.
Для улучшения точности оценок по МНК
можно увеличивать количество наблюдений
в выборке n,
увеличивать диапазон наблюдений Var(x)
или уменьшать

,
(например, увеличивать точность
измерений).

3.
Стандартная ошибка оценки a
считается по формуле

а
стандартная ошибка оценки b
считается по формуле

.

В компьютерных программах именно эти
числа приводятся в круглых скобках под
значениями оценок.

Полученные
соотношения проиллюстрируем экспериментами
по методу Монте-Карло, описанными ранее.
В серии I
u
определялось на основе случайных чисел,
взятых из генеральной совокупности с
нулевым средним и единичной дисперсией

а x
представлял собой набор чисел от 1 до
20. Можно легко вычислить Var(x),
которая равна 33,25.

Следовательно,

(3.32)


.
(3.33)

Таким
образом, истинное стандартное отклонение
для b
равно

.
Какие же результаты получены вместо
этого компьютером в 10 экспериментах
серии I?
Он должен был вычислить стандартную
ошибку, используя уравнение (3.31).
Результаты этих расчетов для 10
экспериментов представлены в табл. 3.5.

Таблица 3.5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #

    22.03.2016179.71 Кб71а1.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Регрессионный анализ:

Регрессионным анализом называется раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между случайными величинами по результатам наблюдений над ними. Сюда включаются методы выбора модели изучаемой зависимости и оценки ее параметров, методы проверки статистических гипотез о зависимости.

Пусть между случайными величинами X и Y существует линейная корреляционная зависимость. Это означает, что математическое ожидание Y линейно зависит от значений случайной величины X. График этой зависимости (линия регрессии Y на X) имеет уравнение Регрессионный анализ - определение и вычисление с примерами решения

Линейная модель пригодна в качестве первого приближения и в случае нелинейной корреляции, если рассматривать небольшие интервалы возможных значений случайных величин.

Пусть параметры линии регрессии Регрессионный анализ - определение и вычисление с примерами решения неизвестны, неизвестна и величина коэффициента корреляции Регрессионный анализ - определение и вычисление с примерами решения Над случайными величинами X и Y проделано n независимых наблюдений, в результате которых получены n пар значений: Регрессионный анализ - определение и вычисление с примерами решения Эти результаты могут служить источником информации о неизвестных значениях Регрессионный анализ - определение и вычисление с примерами решения надо только уметь эту информацию извлечь оттуда.

Неизвестная нам линия регрессии Регрессионный анализ - определение и вычисление с примерами решения как и всякая линия регрессии, имеет то отличительное свойство, что средний квадрат отклонений значений Y от нее минимален. Поэтому в качестве оценок для Регрессионный анализ - определение и вычисление с примерами решения можно принять те их значения, при которых имеет минимум функция Регрессионный анализ - определение и вычисление с примерами решения

Такие значения Регрессионный анализ - определение и вычисление с примерами решения, согласно необходимым условиям экстремума, находятся из системы уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

Решения этой системы уравнений дают оценки называемые оценками по методу наименьших квадратов.Регрессионный анализ - определение и вычисление с примерами решения

и

Регрессионный анализ - определение и вычисление с примерами решения

Известно, что оценки по методу наименьших квадратов являются несмещенными и, более того, среди всех несмещенных оценок обладают наименьшей дисперсией. Для оценки коэффициента корреляции можно воспользоваться тем, что Регрессионный анализ - определение и вычисление с примерами решения где Регрессионный анализ - определение и вычисление с примерами решения средние квадратические отклонения случайных величин X и Y соответственно. Обозначим через Регрессионный анализ - определение и вычисление с примерами решения оценки этих средних квадратических отклонений на основе опытных данных. Оценки можно найти, например, по формуле (3.1.3). Тогда для коэффициента корреляции имеем оценку Регрессионный анализ - определение и вычисление с примерами решения

По методу наименьших квадратов можно находить оценки параметров линии регрессии и при нелинейной корреляции. Например, для линии регрессии вида Регрессионный анализ - определение и вычисление с примерами решения оценки параметров Регрессионный анализ - определение и вычисление с примерами решения находятся из условия минимума функции

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По данным наблюдений двух случайных величин найти коэффициент корреляции и уравнение линии регрессии Y наРегрессионный анализ - определение и вычисление с примерами решения

Решение. Вычислим величины, необходимые для использования формул (3.7.1)–(3.7.3):

 Регрессионный анализ - определение и вычисление с примерами решения

По формулам (3.7.1) и (3.7.2) получимРегрессионный анализ - определение и вычисление с примерами решения

Итак, оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения Так как Регрессионный анализ - определение и вычисление с примерами решения то по формуле (3.1.3)

Регрессионный анализ - определение и вычисление с примерами решения

Аналогично, Регрессионный анализ - определение и вычисление с примерами решения Поэтому в качестве оценки коэффициента корреляции имеем по формуле (3.7.3) величину Регрессионный анализ - определение и вычисление с примерами решения

Ответ.  Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Получена выборка значений величин X и YРегрессионный анализ - определение и вычисление с примерами решения

Для представления зависимости между величинами предполагается использовать модель Регрессионный анализ - определение и вычисление с примерами решения Найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Решение. Рассмотрим сначала задачу оценки параметров этой модели в общем виде. Линия Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и поэтому параметры ее можно найти из условия минимума функции (сумма квадратов отклонений значений Y от линии должна быть минимальной по свойству линии регрессии)Регрессионный анализ - определение и вычисление с примерами решения

Необходимые условия экстремума приводят к системе из двух уравнений:Регрессионный анализ - определение и вычисление с примерами решения

Откуда

Регрессионный анализ - определение и вычисление с примерами решения

Решения системы уравнений (3.7.4) и (3.7.5) и будут оценками по методу наименьших квадратов для параметров Регрессионный анализ - определение и вычисление с примерами решения

На основе опытных данных вычисляем:Регрессионный анализ - определение и вычисление с примерами решения

В итоге получаем систему уравнений (?????) и (?????) в виде Регрессионный анализ - определение и вычисление с примерами решения

Эта система имеет решения Регрессионный анализ - определение и вычисление с примерами решения

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Если наблюдений много, то результаты их обычно группируют и представляют в виде корреляционной таблицы.Регрессионный анализ - определение и вычисление с примерами решения

В этой таблице Регрессионный анализ - определение и вычисление с примерами решения равно числу наблюдений, для которых X находится в интервале Регрессионный анализ - определение и вычисление с примерами решения а Y – в интервале Регрессионный анализ - определение и вычисление с примерами решения Через Регрессионный анализ - определение и вычисление с примерами решения обозначено число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а Y произвольно. Число наблюдений, при которых Регрессионный анализ - определение и вычисление с примерами решения а X произвольно, обозначено через Регрессионный анализ - определение и вычисление с примерами решения

Если величины дискретны, то вместо интервалов указывают отдельные значения этих величин. Для непрерывных случайных величин представителем каждого интервала считают его середину и полагают, что Регрессионный анализ - определение и вычисление с примерами решения и Регрессионный анализ - определение и вычисление с примерами решения  наблюдались Регрессионный анализ - определение и вычисление с примерами решения раз.

При больших значениях X и Y можно для упрощения вычислений перенести начало координат и изменить масштаб по каждой из осей, а после завершения вычислений вернуться к старому масштабу.

Пример:

Проделано 80 наблюдений случайных величин X и Y. Результаты наблюдений представлены в виде таблицы. Найти линию регрессии Y на X. Оценить коэффициент корреляции.Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Решение. Представителем каждого интервала будем считать его середину. Перенесем начало координат и изменим масштаб по каждой оси так, чтобы значения X и Y были удобны для вычислений. Для этого перейдем к новым переменным Регрессионный анализ - определение и вычисление с примерами решения Значения этих новых переменных указаны соответственно в самой верхней строке и самом левом столбце таблицы.

Чтобы иметь представление о виде линии регрессии, вычислим средние значения Регрессионный анализ - определение и вычисление с примерами решения при фиксированных значениях Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Нанесем эти значения на координатную плоскость, соединив для наглядности их отрезками прямой (рис. 3.7.1).Регрессионный анализ - определение и вычисление с примерами решения

По виду полученной ломанной линии можно предположить, что линия регрессии Y на X является прямой. Оценим ее параметры. Для этого сначала вычислим с учетом группировки данных в таблице все величины, необходимые для использования формул (3.31–3.33): Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Тогда

Регрессионный анализ - определение и вычисление с примерами решения

В новом масштабе оценка линии регрессии имеет вид Регрессионный анализ - определение и вычисление с примерами решения График этой прямой линии изображен на рис. 3.7.1.

Для оценки Регрессионный анализ - определение и вычисление с примерами решения по корреляционной таблице можно воспользоваться формулой (3.1.3):

Регрессионный анализ - определение и вычисление с примерами решения

Подобным же образом можно оценить Регрессионный анализ - определение и вычисление с примерами решения величиной Регрессионный анализ - определение и вычисление с примерами решения Тогда оценкой коэффициента корреляции может служить величина Регрессионный анализ - определение и вычисление с примерами решения

Вернемся к старому масштабу:

 Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент корреляции пересчитывать не нужно, так как это величина безразмерная и от масштаба не зависит.

Ответ. Регрессионный анализ - определение и вычисление с примерами решения

Пусть некоторые физические величины X и Y связаны неизвестной нам функциональной зависимостью Регрессионный анализ - определение и вычисление с примерами решения Для изучения этой зависимости производят измерения Y при разных значениях X. Измерениям сопутствуют ошибки и поэтому результат каждого измерения случаен. Если систематической ошибки при измерениях нет, то Регрессионный анализ - определение и вычисление с примерами решения играет роль линии регрессии и все свойства линии регрессии приложимы к Регрессионный анализ - определение и вычисление с примерами решения. В частности, Регрессионный анализ - определение и вычисление с примерами решения обычно находят по методу наименьших квадратов.

Регрессионный анализ

Основные положения регрессионного анализа:

Основная задача регрессионного анализа — изучение зависимости между результативным признаком Y и наблюдавшимся признаком X, оценка функции регрессий.

Предпосылки регрессионного анализа:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде Регрессионный анализ - определение и вычисление с примерами решения

Выражение (2.1), как уже упоминалось в п. 1.2, называется функцией регрессии (или модельным уравнением регрессии) Y на X. Оценке в этом выражении подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения называемые коэффициентами регрессии, а также Регрессионный анализ - определение и вычисление с примерами решения— остаточная дисперсия.

Остаточной дисперсией называется та часть рассеивания результативного признака, которую нельзя объяснить действием наблюдаемого признака; Остаточная дисперсия может служить для оценки точности подбора вида функции регрессии (модельного уравнения регрессии), полноты набора признаков, включенных в анализ. Оценки параметров функции регрессии находят, используя метод наименьших квадратов.

В данном вопросе рассмотрен линейный регрессионный анализ. Линейным он называется потому, что изучаем лишь те виды зависимостейРегрессионный анализ - определение и вычисление с примерами решения которые линейны по оцениваемым параметрам, хотя могут быть нелинейны по переменным X. Например, зависимости Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения линейны относительно параметров Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения хотя вторая и третья зависимости нелинейны относительно переменных х. Вид зависимости Регрессионный анализ - определение и вычисление с примерами решения выбирают, исходя из визуальной оценки характера расположения точек на поле корреляции; опыта предыдущих исследований; соображений профессионального характера, основанных и знании физической сущности процесса.

Важное место в линейном регрессионном анализе занимает так называемая «нормальная регрессия». Она имеет место, если сделать предположения относительно закона распределения случайной величины Y. Предпосылки «нормальной регрессии»:

  1. Y — независимые случайные величины, имеющие постоянную дисперсию и распределенные по нормальному закону;
  2. X— величины наблюдаемого признака (величины не случайные);
  3. условное математическое ожидание Регрессионный анализ - определение и вычисление с примерами решения можно представить в виде (2.1).

В этом случае оценки коэффициентов регрессии — несмещённые с минимальной дисперсией и нормальным законом распределения. Из этого положения следует что при «нормальной регрессии» имеется возможность оценить значимость оценок коэффициентов регрессии, а также построить доверительный интервал для коэффициентов регрессии и условного математического ожидания M(YX=x).

Линейная регрессия

Рассмотрим простейший случай регрессионного анализа — модель вида (2.1), когда зависимость Регрессионный анализ - определение и вычисление с примерами решения линейна и по оцениваемым параметрам, и

по переменным. Оценки параметров модели (2.1) Регрессионный анализ - определение и вычисление с примерами решения обозначил Регрессионный анализ - определение и вычисление с примерами решенияОценку остаточной дисперсии Регрессионный анализ - определение и вычисление с примерами решения обозначим Регрессионный анализ - определение и вычисление с примерами решенияПодставив в формулу (2.1) вместо параметров их оценки, получим уравнение регрессии Регрессионный анализ - определение и вычисление с примерами решениякоэффициенты которого Регрессионный анализ - определение и вычисление с примерами решения находят из условия минимума суммы квадратов отклонений измеренных значений результативного признакаРегрессионный анализ - определение и вычисление с примерами решения от вычисленных по уравнению регрессии Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Составим систему нормальных уравнений: первое уравнение

Регрессионный анализ - определение и вычисление с примерами решения

откуда   Регрессионный анализ - определение и вычисление с примерами решения

второе уравнениеРегрессионный анализ - определение и вычисление с примерами решения

откудаРегрессионный анализ - определение и вычисление с примерами решения

Итак,
Регрессионный анализ - определение и вычисление с примерами решения
Оценки, полученные по способу наименьших квадратов, обладают минимальной дисперсией в классе линейных оценок. Решая систему (2.2) относительноРегрессионный анализ - определение и вычисление с примерами решения найдём оценки параметров Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Остаётся получить оценку параметра Регрессионный анализ - определение и вычисление с примерами решения . Имеем
Регрессионный анализ - определение и вычисление с примерами решения
где т — количество наблюдений.

Еслит велико, то для упрощения расчётов наблюдавшиеся данные принята группировать, т.е. строить корреляционную таблицу. Пример построения такой таблицы приведен в п. 1.5. Формулы для нахождения коэффициентов регрессии по сгруппированным данным те же, что и для расчёта по несгруппированным данным, но суммыРегрессионный анализ - определение и вычисление с примерами решениязаменяют на
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — частоты повторений соответствующих значений переменных. В дальнейшем часто используется этот наглядный приём вычислений.
 

Нелинейная регрессия

Рассмотрим случай, когда зависимость нелинейна по переменным х, например модель вида
Регрессионный анализ - определение и вычисление с примерами решения   Регрессионный анализ - определение и вычисление с примерами решения

На рис. 2.1 изображено поле корреляции. Очевидно, что зависимость между Y и X нелинейная и её графическим изображением является не прямая, а кривая. Оценкой выражения (2.6) является уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —оценки коэффициентов регрессии Регрессионный анализ - определение и вычисление с примерами решения
Регрессионный анализ - определение и вычисление с примерами решения
Принцип нахождения коэффициентов тот же — метод наименьших квадратов, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

или

Регрессионный анализ - определение и вычисление с примерами решения

Дифференцируя последнее равенство по Регрессионный анализ - определение и вычисление с примерами решения и приравнивая правые части нулю, получаем так называемую систему нормальных уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

В общем случае нелинейной зависимости между переменными Y и X связь может выражаться многочленом k-й степени от x:

Регрессионный анализ - определение и вычисление с примерами решения

Коэффициенты регрессии определяют по принципу наименьших квадратов. Система нормальных уравнений имеет вид

Регрессионный анализ - определение и вычисление с примерами решения
Вычислив коэффициенты системы, её можно решить любым известным способом.
 

Оценка значимости коэффициентов регрессии. Интервальная оценка коэффициентов регрессии

Проверить значимость оценок коэффициентов регрессии — значит установить, достаточна ли величина оценки для статистически обоснованного вывода о том, что коэффициент регрессии отличен от нуля. Для этого проверяют гипотезу о равенстве нулю коэффициента регрессии, соблюдая предпосылки «нормальной регрессии». В этом случае вычисляемая для проверки нулевой гипотезы Регрессионный анализ - определение и вычисление с примерами решения статистика

Регрессионный анализ - определение и вычисление с примерами решения

имеет распределение Стьюдента с к= n-2 степенями свободы (b — оценка коэффициента регрессии, Регрессионный анализ - определение и вычисление с примерами решения— оценка среднеквадратического отклонения

коэффициента регрессии, иначе стандартная ошибка оценки). По уровню значимости а и числу степеней свободы к находят по таблицам распределения Стьюдента (см. табл. 1 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают, коэффициент считают значимым. ПриРегрессионный анализ - определение и вычисление с примерами решениянет оснований отвергать нулевую гипотезу.

Оценки среднеквадратического отклонения коэффициентов регрессии вычисляют по следующим формулам:
Регрессионный анализ - определение и вычисление с примерами решения
где   Регрессионный анализ - определение и вычисление с примерами решения— оценка остаточной дисперсии, вычисляемая по
формуле (2.5).

Доверительный интервал для значимых параметров строят по обычной схеме. Из условия

Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости, находим

Регрессионный анализ - определение и вычисление с примерами решения
 

Интервальная оценка для условного математического ожидания

Линия регрессии характеризует изменение условного математического ожидания результативного признака от вариации остальных признаков.

Точечной оценкой условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения является условное среднее Регрессионный анализ - определение и вычисление с примерами решения   Кроме точечной оценки для Регрессионный анализ - определение и вычисление с примерами решения можно
построить доверительный интервал в точке Регрессионный анализ - определение и вычисление с примерами решения

Известно, что Регрессионный анализ - определение и вычисление с примерами решения имеет распределение
Стьюдента с k=n—2 степенями свободы. Найдя оценку среднеквадратического отклонения для условного среднего, можно построить доверительный интервал для условного математического ожидания Регрессионный анализ - определение и вычисление с примерами решения

Оценку дисперсии условного среднего вычисляют по формуле
Регрессионный анализ - определение и вычисление с примерами решения
или для интервального ряда
Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где а — уровень значимости. Отсюда

Регрессионный анализ - определение и вычисление с примерами решения
Доверительный интервал для условного математического ожидания можно изобразить графически (рис, 2.2).

Регрессионный анализ - определение и вычисление с примерами решения

Из рис. 2.2 видно, что в точке Регрессионный анализ - определение и вычисление с примерами решения границы интервала наиболее близки друг другу. Расположение границ доверительного интервала показывает, что прогнозы по уравнению регрессии, хороши только в случае, если значение х не выходит за пределы выборки, по которой вычислено уравнение регрессии; иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.

Проверка значимости уравнения регрессии

Оценить значимость уравнения регрессии — значит установить, соответствует ли математическая, модель, выражающая зависимость между Y и X, экспериментальным данным. Для оценки значимости в предпосылках «нормальной регрессии» проверяют гипотезу Регрессионный анализ - определение и вычисление с примерами решения Если она отвергается, то считают, что между Y и X нет связи (или связь нелинейная). Для проверки нулевой гипотезы используют основное положение дисперсионного анализа о разбиении суммы квадратов на слагаемые. Воспользуемся разложением Регрессионный анализ - определение и вычисление с примерами решения— Общая сумма квадратов отклонений результативного признака

Регрессионный анализ - определение и вычисление с примерами решения разлагается на Регрессионный анализ - определение и вычисление с примерами решения (сумму, характеризующую влияние признака

X) и Регрессионный анализ - определение и вычисление с примерами решения (остаточную сумму квадратов, характеризующую влияние неучтённых факторов). Очевидно, чем меньше влияние неучтённых факторов, тем лучше математическая модель соответствует экспериментальным данным, так как вариация У в основном объясняется влиянием признака X.

Для проверки нулевой гипотезы вычисляют статистику Регрессионный анализ - определение и вычисление с примерами решения которая имеет распределение Фишера-Снедекора с АРегрессионный анализ - определение и вычисление с примерами решения степенями свободы (в п — число наблюдений). По уровню значимости а и числу степеней свободы Регрессионный анализ - определение и вычисление с примерами решения находят по таблицам F-распределение для уровня значимости а=0,05 (см. табл. 3 приложений) критическое значениеРегрессионный анализ - определение и вычисление с примерами решения удовлетворяющее условию Регрессионный анализ - определение и вычисление с примерами решения. Если Регрессионный анализ - определение и вычисление с примерами решениянулевую гипотезу отвергают, уравнение считают значимым. Если Регрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу.

Многомерный регрессионный анализ

В случае, если изменения результативного признака определяются действием совокупности других признаков, имеет место многомерный регрессионный анализ. Пусть результативный признак У, а независимые признаки Регрессионный анализ - определение и вычисление с примерами решенияДля многомерного случая предпосылки регрессионного анализа можно сформулировать следующим образом: У -независимые случайные величины со средним Регрессионный анализ - определение и вычисление с примерами решения и постоянной дисперсией Регрессионный анализ - определение и вычисление с примерами решения— линейно независимые векторы Регрессионный анализ - определение и вычисление с примерами решения. Все положения, изложенные в п.2.1, справедливы для многомерного случая. Рассмотрим модель вида 

Регрессионный анализ - определение и вычисление с примерами решения

Оценке подлежат параметры Регрессионный анализ - определение и вычисление с примерами решения и остаточная дисперсия.

Заменив параметры их оценками, запишем уравнение регрессии

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты в этом выражении находят методом наименьших квадратов.

Исходными данными для вычисления коэффициентов Регрессионный анализ - определение и вычисление с примерами решения является выборка из многомерной совокупности, представляемая обычно в виде матрицы X и вектора Y:
Регрессионный анализ - определение и вычисление с примерами решения   

Как и в двумерном случае, составляют систему нормальных уравнений
Регрессионный анализ - определение и вычисление с примерами решения
которую можно решить любым способом, известным из линейной алгебры. Рассмотрим один из них — способ обратной матрицы. Предварительно преобразуем систему уравнений. Выразим из первого уравнения значение Регрессионный анализ - определение и вычисление с примерами решениячерез остальные параметры:

Регрессионный анализ - определение и вычисление с примерами решения

Подставим в остальные уравнения системы вместо Регрессионный анализ - определение и вычисление с примерами решения полученное выражение:

Регрессионный анализ - определение и вычисление с примерами решения

Пусть С — матрица коэффициентов при неизвестных параметрах Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения— матрица, обратная матрице С; Регрессионный анализ - определение и вычисление с примерами решения — элемент, стоящий на пересечении i-Й строки и i-го столбца матрицыРегрессионный анализ - определение и вычисление с примерами решения    — выражение
Регрессионный анализ - определение и вычисление с примерами решения. Тогда, используя формулы линейной алгебры,

запишем окончательные выражения для параметров:

Регрессионный анализ - определение и вычисление с примерами решения

Оценкой остаточной дисперсииРегрессионный анализ - определение и вычисление с примерами решения является

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения — измеренное значение результативного признака;Регрессионный анализ - определение и вычисление с примерами решения значение результативного признака, вычисленное по уравнению регрессий.

Если выборка получена из нормально распределенной генеральной совокупности, то, аналогично изложенному в п. 2.4, можно проверить значимость оценок коэффициентов регрессии, только в данном случае статистикуРегрессионный анализ - определение и вычисление с примерами решения вычисляют для каждого j-го коэффициента регрессии

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения—элемент обратной матрицы, стоящий на пересечении i-й строки и j-
го столбца;Регрессионный анализ - определение и вычисление с примерами решения —диагональный элемент обратной матрицы.

При заданном уровне значимости а и числе степеней свободы к=n— m—1 по табл. 1 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу о равенстве нулю коэффициента регрессии отвергают. Оценку коэффициента считают значимой. Такую проверку производят последовательно для каждого коэффициента регрессии. ЕслиРегрессионный анализ - определение и вычисление с примерами решения то нет оснований отвергать нулевую гипотезу, оценку коэффициента регрессии считают незначимой.

Для значимых коэффициентов регрессии целесообразно построить доверительные интервалы по формуле (2.10). Для оценки значимости уравнения регрессии следует проверить нулевую гипотезу о том, что все коэффициенты регрессии (кроме свободного члена) равны нулю:Регрессионный анализ - определение и вычисление с примерами решения Регрессионный анализ - определение и вычисление с примерами решения — вектор коэффициентов регрессии). Нулевую гипотезу проверяют, так же как и в п. 2.6, с помощью статистики Регрессионный анализ - определение и вычисление с примерами решения, где Регрессионный анализ - определение и вычисление с примерами решения — сумма квадратов, характеризующая влияние признаков X; Регрессионный анализ - определение и вычисление с примерами решения — остаточная сумма квадратов, характеризующая влияние неучтённых факторов; Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решенияДля уровня значимости а и числа степеней свободы Регрессионный анализ - определение и вычисление с примерами решения по табл. 3 приложений находят критическое значение Регрессионный анализ - определение и вычисление с примерами решения Если Регрессионный анализ - определение и вычисление с примерами решения то нулевую гипотезу об одновременном равенстве нулю коэффициентов регрессии отвергают. Уравнение регрессии считают значимым. При Регрессионный анализ - определение и вычисление с примерами решения нет оснований отвергать нулевую гипотезу, уравнение регрессии считают незначимым.

Факторный анализ

Основные положения. В последнее время всё более широкое распространение находит один из новых разделов многомерного статистического анализа — факторный анализ. Первоначально этот метод

разрабатывался для объяснения многообразия корреляций между исходными параметрами. Действительно, результатом корреляционного анализа является матрица коэффициентов корреляций. При малом числе параметров можно произвести визуальный анализ этой матрицы. С ростом числа параметра (10 и более) визуальный анализ не даёт положительных результатов. Оказалось, что всё многообразие корреляционных связей можно объяснить действием нескольких обобщённых факторов, являющихся функциями исследуемых параметров, причём сами обобщённые факторы при этом могут быть и неизвестны, однако их можно выразить через исследуемые параметры.

Один из основоположников факторного анализа Л. Терстоун приводит такой пример: несколько сотен мальчиков выполняют 20 разнообразных гимнастических упражнений. Каждое упражнение оценивают баллами. Можно рассчитать матрицу корреляций между 20 упражнениями. Это большая матрица размером 20><20. Изучая такую матрицу, трудно уловить закономерность связей между упражнениями. Нельзя ли объяснить скрытую в таблице закономерность действием каких-либо обобщённых факторов, которые в результате эксперимента непосредственно, не оценивались? Оказалось, что обо всех коэффициентах корреляции можно судить по трём обобщённым факторам, которые и определяют успех выполнения всех 20 гимнастических упражнений: чувство равновесия, усилие правого плеча, быстрота движения тела.

Дальнейшие разработки факторного анализа доказали, что этот метод может быть с успехом применён в задачах группировки и классификации объектов. Факторный анализ позволяет группировать объекты со сходными сочетаниями признаков и группировать признаки с общим характером изменения от объекта к объекту. Действительно, выделенные обобщённые факторы можно использовать как критерии при классификации мальчиков по способностям к отдельным группам гимнастических упражнений.

Методы факторного анализа находят применение в психологии и экономике, социологии и экономической географии. Факторы, выраженные через исходные параметры, как правило, легко интерпретировать как некоторые существенные внутренние характеристики объектов.

Факторный анализ может быть использован и как самостоятельный метод исследования, и вместе с другими методами многомерного анализа, например в сочетании с регрессионным анализом. В этом случае для набора зависимых переменных наводят обобщённые факторы, которые потом входят в регрессионный анализ в качестве переменных. Такой подход позволяет сократить число переменных в регрессионном анализе, устранить коррелированность переменных, уменьшить влияние ошибок и в случае ортогональности выделенных факторов значительно упростить оценку значимости переменных.

Представление, информации в факторном анализе

Для проведения факторного анализа информация должна быть представлена в виде двумерной таблицы чисел размерностью Регрессионный анализ - определение и вычисление с примерами решенияаналогичной приведенной в п. 2.7 (матрица исходных данных). Строки этой матрицы должны соответствовать объектам наблюдений Регрессионный анализ - определение и вычисление с примерами решения столбцы — признакамРегрессионный анализ - определение и вычисление с примерами решениятаким образом, каждый признак является как бы статистическим рядом, в котором наблюдения варьируют от объекта к объекту. Признаки, характеризующие объект наблюдения, как правило, имеют различную размерность. Чтобы устранить влияние размерности и обеспечить сопоставимость признаков, матрицу исходных данных    обычно нормируют, вводя единый    масштаб. Самым распространенным видом нормировки является стандартизация. От переменных Регрессионный анализ - определение и вычисление с примерами решения переходят к переменным Регрессионный анализ - определение и вычисление с примерами решенияВ дальнейшем, говоря о матрице исходных переменных, всегда будем иметь в виду стандартизованную матрицу.

Основная модель факторного анализа. Основная модель факторного анализа имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения-j-й признак (величина случайная); Регрессионный анализ - определение и вычисление с примерами решения— общие факторы (величины случайные, имеющие нормальный закон распределения); Регрессионный анализ - определение и вычисление с примерами решения— характерный фактор; Регрессионный анализ - определение и вычисление с примерами решения— факторные нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);Регрессионный анализ - определение и вычисление с примерами решения — нагрузка характерного фактора.

Модель предполагает, что каждый из j признаков, входящих в исследуемый набор и заданных в стандартной форме, может быть представлен в виде линейной комбинации небольшого числа общих факторов Регрессионный анализ - определение и вычисление с примерами решения и характерного фактора Регрессионный анализ - определение и вычисление с примерами решения

Термин «общий фактор» подчёркивает, что каждый такой фактор имеет существенное значение для анализа всех признаковРегрессионный анализ - определение и вычисление с примерами решения, т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Термин «характерный фактор» показывает, что он относится только к данному j-му признаку. Это специфика признака, которая не может быть, выражена через факторы Регрессионный анализ - определение и вычисление с примерами решения

Факторные нагрузки Регрессионный анализ - определение и вычисление с примерами решения. характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа — определение факторных нагрузок. Факторная модель относится к классу аппроксимационных. Параметры модели должны быть выбраны так, чтобы наилучшим образом аппроксимировать корреляции между наблюдаемыми признаками.

Для j-го признака и i-го объекта модель (2.19) можно записать в. виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения значение k-го фактора для i-го объекта.

Дисперсию признака Регрессионный анализ - определение и вычисление с примерами решения можно разложить на составляющие: часть, обусловленную действием общих факторов, — общность Регрессионный анализ - определение и вычисление с примерами решения и часть, обусловленную действием j-го характера фактора, характерность Регрессионный анализ - определение и вычисление с примерами решения Все переменные представлены в стандартизированном виде, поэтому дисперсий у-го признака Регрессионный анализ - определение и вычисление с примерами решенияДисперсия признака может быть выражена через факторы и в конечном счёте через факторные нагрузки.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения —доля дисперсии признака Регрессионный анализ - определение и вычисление с примерами решения приходящаяся на k-й фактор.

Полный вклад k-го фактора в суммарную дисперсию признаков

Регрессионный анализ - определение и вычисление с примерами решения

Вклад общих факторов в суммарную дисперсию Регрессионный анализ - определение и вычисление с примерами решения
 

Факторное отображение

Используя модель (2.19), запишем выражения для каждого из параметров:

Регрессионный анализ - определение и вычисление с примерами решения
Коэффициенты системы (2,21) — факторные нагрузки — можно представить в виде матрицы, каждая строка которой соответствует параметру, а столбец — фактору.

Факторный анализ позволяет получить не только матрицу отображений, но и коэффициенты корреляции между параметрами и

факторами, что является важной характеристикой качества факторной модели. Таблица таких коэффициентов корреляции называется факторной структурой или просто структурой.

Коэффициенты отображения можно выразить через выборочные парные коэффициенты корреляции. На этом основаны методы вычисления факторного отображения.

Рассмотрим связь между элементами структуры и коэффициентами отображения. Для этого, учитывая выражение (2.19) и определение выборочного коэффициента корреляции, умножим уравнения системы (2.21) на соответствующие факторы, произведём суммирование по всем n наблюдениям и, разделив на n, получим следующую систему уравнений:

Регрессионный анализ - определение и вычисление с примерами решения

гдеРегрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции между j-м параметром и к-
м фактором;Регрессионный анализ - определение и вычисление с примерами решения — коэффициент корреляции между к-м и р-м факторами.

Если предположить, что общие факторы между собой, не коррелированы, то уравнения    (2.22) можно записать в виде

Регрессионный анализ - определение и вычисление с примерами решения, т.е. коэффициенты отображения равны
элементам структуры.

Введём понятие, остаточного коэффициента корреляции и остаточной корреляционной матрицы. Исходной информацией для построения факторной модели (2.19) служит матрица выборочных парных коэффициентов корреляции. Используя построенную факторную модель, можно снова вычислить коэффициенты корреляции между признаками и сравнись их с исходными Коэффициентами корреляции. Разница между ними и есть остаточный коэффициент корреляции.

В случае независимости факторов имеют место совсем простые выражения для вычисляемых коэффициентов корреляции между параметрами: для их вычисления достаточно взять сумму произведений коэффициентов отображения, соответствующих наблюдавшимся признакам: Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —вычисленный по отображению коэффициент корреляции между j-м
и к-м признаком. Остаточный коэффициент корреляции

Регрессионный анализ - определение и вычисление с примерами решения

Матрица остаточных коэффициентов корреляции называется остаточной матрицей или матрицей остатков

Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения — матрица остатков; R — матрица выборочных парных коэффициентов корреляции, или полная матрица; R’— матрица вычисленных по отображению коэффициентов корреляции.

Результаты факторного анализа удобно представить в виде табл. 2.10.
Регрессионный анализ - определение и вычисление с примерами решения

Здесь суммы квадратов нагрузок по строкам — общности параметров, а суммы квадратов нагрузок по столбцам — вклады факторов в суммарную дисперсию параметров. Имеет место соотношение

Регрессионный анализ - определение и вычисление с примерами решения

Определение факторных нагрузок

Матрицу факторных нагрузок можно получить различными способами. В настоящее время наибольшее распространение получил метод главных факторов. Этот метод основан на принципе последовательных приближений и позволяет достичь любой точности. Метод главных факторов предполагает использование ЭВМ. Существуют хорошие алгоритмы и программы, реализующие все вычислительные процедуры.

Введём понятие редуцированной корреляционной матрицы или просто редуцированной матрицы. Редуцированной называется матрица выборочных коэффициентов корреляцииРегрессионный анализ - определение и вычисление с примерами решения у которой на главной диагонали стоят значения общностей Регрессионный анализ - определение и вычисление с примерами решения:Регрессионный анализ - определение и вычисление с примерами решения

Редуцированная и полная матрицы связаны соотношением

Регрессионный анализ - определение и вычисление с примерами решения

где D — матрица характерностей.

Общности, как правило, неизвестны, и нахождение их в факторном анализе представляет серьезную проблему. Вначале определяют (хотя бы приближённо) число общих факторов, совокупность, которых может с достаточной точностью аппроксимировать все взаимосвязи выборочной корреляционной матрицы. Доказано, что число общих факторов (общностей) равно рангу редуцированной матрицы, а при известном ранге можно по выборочной корреляционной матрице найти оценки общностей. Числа общих факторов можно определить априори, исходя из физической природы эксперимента. Затем рассчитывают матрицу факторных нагрузок. Такая матрица, рассчитанная методом главных факторов, обладает одним интересным свойством: сумма произведений каждой пары её столбцов равна нулю, т.е. факторы попарно ортогональны.

Сама процедура нахождения факторных нагрузок, т.е. матрицы А, состоит из нескольких шагов и заключается в следующем: на первом шаге ищут коэффициенты факторных нагрузок при первом факторе так, чтобы сумма вкладов данного фактора в суммарную общность была максимальной:Регрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения должен быть найден при условии
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения —общностьРегрессионный анализ - определение и вычисление с примерами решенияпараметраРегрессионный анализ - определение и вычисление с примерами решения

Затем рассчитывают матрицу коэффициентов корреляции с учётом только первого фактораРегрессионный анализ - определение и вычисление с примерами решения Имея эту матрицу, получают первую матрицу остатков:Регрессионный анализ - определение и вычисление с примерами решения

На втором шаге определяют коэффициенты нагрузок при втором факторе так, чтобы сумма вкладов второго фактора в остаточную общность (т.е. полную общность без учёта той части, которая приходится на долю первого фактора) была максимальной. Сумма квадратов нагрузок при втором фактореРегрессионный анализ - определение и вычисление с примерами решения

Максимум Регрессионный анализ - определение и вычисление с примерами решения находят из условия
Регрессионный анализ - определение и вычисление с примерами решения
где Регрессионный анализ - определение и вычисление с примерами решения— коэффициент корреляции из первой матрицы остатков; Регрессионный анализ - определение и вычисление с примерами решения — факторные нагрузки с учётом второго фактора. Затем рассчитыва коэффициентов корреляций с учётом второго фактора и вычисляют вторую матрицу остатков: Регрессионный анализ - определение и вычисление с примерами решения

Факторный анализ учитывает суммарную общность. Исходная суммарная общностьРегрессионный анализ - определение и вычисление с примерами решения Итерационный процесс выделения факторов заканчивают, когда учтённая выделенными факторами суммарная общность отличается от исходной суммарной общности меньше чем на Регрессионный анализ - определение и вычисление с примерами решения— наперёд заданное малое число).

Адекватность факторной модели оценивается по матрице остатков (если величины её коэффициентов малы, то модель считают адекватной).

Такова последовательность шагов для нахождения факторных нагрузок. Для нахождения максимума функции (2.24) при условии (2.25) используют метод множителей Лагранжа, который приводит к системе т уравнений относительно m неизвестных Регрессионный анализ - определение и вычисление с примерами решения

Метод главных компонент

Разновидностью метода главных факторов является метод главных компонент или компонентный анализ, который реализует модель вида

Регрессионный анализ - определение и вычисление с примерами решения

где m — количество параметров (признаков).

Каждый из наблюдаемых, параметров линейно зависит от m не коррелированных между собой новых компонент (факторов) Регрессионный анализ - определение и вычисление с примерами решенияПо сравнению с моделью факторного анализа (2.19) в модели (2.28) отсутствует характерный фактор, т.е. считается, что вся вариация параметра может быть объяснена только действием общих или главных факторов. В случае компонентного анализа исходной является матрица коэффициентов корреляции, где на главной диагонали стоят единицы. Результатом компонентного анализа, так же как и факторного, является матрица факторных нагрузок. Поиск факторного решения — это ортогональное преобразование матрицы исходных переменных, в результате которого каждый параметр может быть представлен линейной комбинацией найденных m факторов, которые называют главными компонентами. Главные компоненты легко выражаются через наблюдённые параметры.

Если для дальнейшего анализа оставить все найденные т компонент, то тем самым будет использована вся информация, заложенная в корреляционной матрице. Однако это неудобно и нецелесообразно. На практике обычно оставляют небольшое число компонент, причём количество их определяется долей суммарной дисперсии, учитываемой этими компонентами. Существуют различные критерии для оценки числа оставляемых компонент; чаще всего используют следующий простой критерий: оставляют столько компонент, чтобы суммарная дисперсия, учитываемая ими, составляла заранее установленное число процентов. Первая из компонент должна учитывать максимум суммарной дисперсии параметров; вторая — не коррелировать с первой и учитывать максимум оставшейся дисперсии и так до тех пор, пока вся дисперсия не будет учтена. Сумма учтённых всеми компонентами дисперсий равна сумме дисперсий исходных параметров. Математический аппарат компонентного анализа полностью совпадает с аппаратом метода главных факторов. Отличие только в исходной матрице корреляций.

Компонента (или фактор) через исходные переменные выражается следующим образом:

Регрессионный анализ - определение и вычисление с примерами решения

где Регрессионный анализ - определение и вычисление с примерами решения— элементы факторного решения:Регрессионный анализ - определение и вычисление с примерами решения— исходные переменные; Регрессионный анализ - определение и вычисление с примерами решения.— k-е собственное значение; р — количество оставленных главных
компонент.

Для иллюстрации возможностей факторного анализа покажем, как, используя метод главных компонент, можно сократить размерность пространства независимых переменных, перейдя от взаимно коррелированных параметров к независимым факторам, число которых р

Следует особо остановиться на интерпретации результатов, т.е. на смысловой стороне факторного анализа. Собственно факторный анализ состоит из двух важных этапов; аппроксимации корреляционной матрицы и интерпретации результатов. Аппроксимировать корреляционную матрицу, т.е. объяснить корреляцию между параметрами действием каких-либо общих для них факторов, и выделить сильно коррелирующие группы параметров достаточно просто:    из корреляционной матрицы одним из методов

факторного анализа непосредственно получают матрицу нагрузок — факторное решение, которое называют прямым факторным решением. Однако часто это решение не удовлетворяет исследователей. Они хотят интерпретировать фактор как скрытый, но существенный параметр, поведение которого определяет поведение некоторой своей группы наблюдаемых параметров, в то время как, поведение других параметров определяется поведением других факторов. Для этого у каждого параметра должна быть наибольшая по модулю факторная нагрузка с одним общим фактором. Прямое решение следует преобразовать, что равносильно повороту осей общих факторов. Такие преобразования называют вращениями, в итоге получают косвенное факторное решение, которое и является результатом факторного анализа.

Приложения

Значение t — распределения Стьюдента Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Понятие о регрессионном анализе. Линейная выборочная регрессия. Метод наименьших квадратов (МНК)

Основные задачи регрессионного анализа:

  •  Вычисление выборочных коэффициентов регрессии
  •  Проверка значимости коэффициентов регрессии
  •  Проверка адекватности модели
  •  Выбор лучшей регрессии
  •  Вычисление стандартных ошибок, анализ остатков

Построение простой регрессии по экспериментальным данным.

Предположим, что случайные величины Регрессионный анализ - определение и вычисление с примерами решения связаны линейной корреляционной зависимостью Регрессионный анализ - определение и вычисление с примерами решения для отыскания которой проведено Регрессионный анализ - определение и вычисление с примерами решения независимых измерений Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Диаграмма рассеяния (разброса, рассеивания)
Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — координаты экспериментальных точек.

Выборочное уравнение прямой линии регрессии Регрессионный анализ - определение и вычисление с примерами решения имеет вид

Регрессионный анализ - определение и вычисление с примерами решения

Задача: подобрать Регрессионный анализ - определение и вычисление с примерами решения таким образом, чтобы экспериментальные точки как можно ближе лежали к прямой Регрессионный анализ - определение и вычисление с примерами решения

Для того, что бы провести прямую Регрессионный анализ - определение и вычисление с примерами решения воспользуемся МНК. Потребуем,

чтобы Регрессионный анализ - определение и вычисление с примерами решения

Постулаты регрессионного анализа, которые должны выполняться при использовании МНК.

  1. Регрессионный анализ - определение и вычисление с примерами решения подчинены нормальному закону распределения.
  2. Дисперсия Регрессионный анализ - определение и вычисление с примерами решения постоянна и не зависит от номера измерения.
  3. Результаты наблюдений Регрессионный анализ - определение и вычисление с примерами решения в разных точках независимы.
  4. Входные переменные Регрессионный анализ - определение и вычисление с примерами решения независимы, неслучайны и измеряются без ошибок.

Введем функцию ошибок Регрессионный анализ - определение и вычисление с примерами решения и найдём её минимальное значение

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Решив систему, получим искомые значения Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения является несмещенными оценками истинных значений коэффициентов Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения где 

Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка корреляционного момента (ковариации),
Регрессионный анализ - определение и вычисление с примерами решения несмещенная оценка дисперсии Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения выборочная ковариация,

  Регрессионный анализ - определение и вычисление с примерами решения выборочная дисперсия Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — выборочный коэффициент корреляции

Коэффициент детерминации

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — наблюдаемое экспериментальное значение Регрессионный анализ - определение и вычисление с примерами решения при Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — предсказанное значение Регрессионный анализ - определение и вычисление с примерами решения удовлетворяющее уравнению регрессии

Регрессионный анализ - определение и вычисление с примерами решения — средневыборочное значение Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — коэффициент детерминации, доля изменчивости Регрессионный анализ - определение и вычисление с примерами решения объясняемая  рассматриваемой регрессионной моделью. Для парной линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения

Коэффициент детерминации принимает значения от 0 до 1. Чем ближе значение коэффициента к 1, тем сильнее зависимость. При оценке регрессионных моделей это используется для доказательства адекватности модели (качества регрессии). Для приемлемых моделей предполагается, что коэффициент детерминации должен быть хотя бы не меньше 0,5 (в этом случае коэффициент множественной корреляции превышает по модулю 0,7). Модели с коэффициентом детерминации выше 0,8 можно признать достаточно хорошими (коэффициент корреляции превышает 0,9). Подтверждение адекватности модели проводится на основе дисперсионного анализа путем проверки гипотезы о значимости коэффициента детерминации.

Регрессионный анализ - определение и вычисление с примерами решения регрессия незначима

Регрессионный анализ - определение и вычисление с примерами решения регрессия значима

Регрессионный анализ - определение и вычисление с примерами решения — уровень значимости 

Регрессионный анализ - определение и вычисление с примерами решения — статистический критерий

Критическая область — правосторонняя; Регрессионный анализ - определение и вычисление с примерами решения

Если Регрессионный анализ - определение и вычисление с примерами решения то нулевая гипотеза отвергается на заданном уровне значимости, следовательно, коэффициент детерминации значим, следовательно, регрессия адекватна.

Мощность статистического критерия. Функция мощности

Регрессионный анализ - определение и вычисление с примерами решения

Определение. Мощностью критерия Регрессионный анализ - определение и вычисление с примерами решения называют вероятность попадания критерия в критическую область при условии, что справедлива конкурирующая гипотеза.

Задача: построить критическую область таким образом, чтобы мощность критерия была максимальной.

Определение. Наилучшей критической областью (НКО) называют критическую область, которая обеспечивает минимальную ошибку второго рода Регрессионный анализ - определение и вычисление с примерами решения

Пример:

По паспортным данным автомобиля расход топлива на 100 километров составляет 10 литров. В результате измерения конструкции двигателя ожидается, что расход топлива уменьшится. Для проверки были проведены испытания 25 автомобилей с модернизированным двигателем; выборочная средняя расхода топлива по результатам испытаний составила 9,3 литра. Предполагая, что выборка получена из нормально распределенной генеральной совокупности с математическим ожиданием Регрессионный анализ - определение и вычисление с примерами решения и дисперсией Регрессионный анализ - определение и вычисление с примерами решения проверить гипотезу, утверждающую, что изменение конструкции двигателя не повлияло на расход топлива.

Регрессионный анализ - определение и вычисление с примерами решения

3) Уровень значимости Регрессионный анализ - определение и вычисление с примерами решения

4) Статистический критерий

Регрессионный анализ - определение и вычисление с примерами решения

5) Критическая область — левосторонняя

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  следовательно Регрессионный анализ - определение и вычисление с примерами решения отвергается на уровне значимости Регрессионный анализ - определение и вычисление с примерами решения

Пример:

В условиях примера 1 предположим, что наряду с Регрессионный анализ - определение и вычисление с примерами решения рассматривается конкурирующая гипотеза Регрессионный анализ - определение и вычисление с примерами решения а критическая область задана неравенством Регрессионный анализ - определение и вычисление с примерами решения Найти вероятность ошибок I рода и II рода.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения автомобилей имеют меньший расход топлива)

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения  автомобилей, имеющих расход топлива 9л на 100 км, классифицируются как автомобили, имеющие расход 10 литров).

Определение. Пусть проверяется Регрессионный анализ - определение и вычисление с примерами решения — критическая область критерия с заданным уровнем значимости Регрессионный анализ - определение и вычисление с примерами решения Функцией мощности критерия Регрессионный анализ - определение и вычисление с примерами решения называется вероятность отклонения Регрессионный анализ - определение и вычисление с примерами решения как функция параметра Регрессионный анализ - определение и вычисление с примерами решения т.е.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — ошибка 1-ого рода

Регрессионный анализ - определение и вычисление с примерами решения — мощность критерия

Пример:

Построить график функции мощности из примера 2 для Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения попадает в критическую область.

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Какой минимальный объем выборки следует взять в условии примера 2 для того, чтобы обеспечить Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Лемма Неймана-Пирсона.

При проверке простой гипотезы Регрессионный анализ - определение и вычисление с примерами решения против простой альтернативной гипотезы Регрессионный анализ - определение и вычисление с примерами решения наилучшая критическая область (НКО) критерия заданного уровня значимости Регрессионный анализ - определение и вычисление с примерами решения состоит из точек выборочного пространства (выборок объема Регрессионный анализ - определение и вычисление с примерами решения для которых справедливо неравенство:

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — константа, зависящая от Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения — элементы выборки;

Регрессионный анализ - определение и вычисление с примерами решения — функция правдоподобия при условии, что соответствующая гипотеза верна.

Пример:

Случайная величина Регрессионный анализ - определение и вычисление с примерами решения имеет нормальное распределение с параметрами Регрессионный анализ - определение и вычисление с примерами решения известно. Найти НКО для проверки Регрессионный анализ - определение и вычисление с примерами решения против Регрессионный анализ - определение и вычисление с примерами решенияпричем Регрессионный анализ - определение и вычисление с примерами решения

Решение:

Регрессионный анализ - определение и вычисление с примерами решения

Ошибка первого рода: Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

НКО: Регрессионный анализ - определение и вычисление с примерами решения

Пример:

Для зависимостиРегрессионный анализ - определение и вычисление с примерами решения заданной корреляционной табл. 13, найти оценки параметров Регрессионный анализ - определение и вычисление с примерами решения уравнения линейной регрессии Регрессионный анализ - определение и вычисление с примерами решения остаточную дисперсию; выяснить значимость уравнения регрессии при Регрессионный анализ - определение и вычисление с примерами решения

Решение. Воспользуемся предыдущими результатами

Регрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения

Согласно формуле (24), уравнение регрессии будет иметь вид Регрессионный анализ - определение и вычисление с примерами решения тогда Регрессионный анализ - определение и вычисление с примерами решения

Для выяснения значимости уравнения регрессии вычислим суммы Регрессионный анализ - определение и вычисление с примерами решенияСоставим расчетную таблицу:

Регрессионный анализ - определение и вычисление с примерами решения

Из (27) и (28) по данным таблицы получим Регрессионный анализ - определение и вычисление с примерами решенияРегрессионный анализ - определение и вычисление с примерами решения

Регрессионный анализ - определение и вычисление с примерами решения по табл. П7 находим Регрессионный анализ - определение и вычисление с примерами решения 

Вычислим статистику

Регрессионный анализ - определение и вычисление с примерами решения

Так как Регрессионный анализ - определение и вычисление с примерами решения то уравнение регрессии значимо. Остаточная дисперсия равна Регрессионный анализ - определение и вычисление с примерами решения

  • Корреляционный анализ
  • Статистические решающие функции
  • Случайные процессы
  • Выборочный метод
  • Проверка гипотезы о равенстве вероятностей
  • Доверительный интервал для математического ожидания
  • Доверительный интервал для дисперсии
  • Проверка статистических гипотез
Стандартная ошибка оценки, также известная как стандартная ошибка уравнения регрессии, определяется следующим образом (см. (6.23))  [c.280]

Стандартная ошибка уравнения регрессии, Эта статистика SEE представляет собой стандартное отклонение фактических значений теоретических значений У.  [c.650]

Что такое стандартная ошибка уравнения регрессии ).Какие допущения лежат в основе парной регрессии 10. Что такое множественная регрессия  [c.679]

Следующий этап корреляционного анализа — расчет уравнения связи (регрессии). Решение проводится обычно шаговым способом. Сначала в расчет принимается один фактор, который оказывает наиболее значимое влияние на результативный показатель, потом второй, третий и т.д. И на каждом шаге рассчитываются уравнение связи, множественный коэффициент корреляции и детерминации, /»»-отношение (критерий Фишера), стандартная ошибка и другие показатели, с помощью которых оценивается надежность уравнения связи. Величина их на каждом шаге сравнивается с предыдущей. Чем выше величина коэффициентов множественной корреляции, детерминации и критерия Фишера и чем ниже величина стандартной ошибки, тем точнее уравнение связи описывает зависимости, сложившиеся между исследуемыми показателями. Если добавление следующих факторов не улучшает оценочных показателей связи, то надо их отбросить, т.е. остановиться на том уравнении, где эти показатели наиболее оптимальны.
 [c.149]

Прогнозное значение ур определяется путем подстановки в уравнение регрессии ух =а + Ьх соответствующего (прогнозного) значения хр. Вычисляется средняя стандартная ошибка прогноза
 [c.9]

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров. С этой целью по каждому из параметров определяется его стандартная ошибка ть и та.
 [c.53]

В прогнозных расчетах по уравнению регрессии определяется предсказываемое (ур) значение как точечный прогноз ух при хр =хь т. е. путем подстановки в уравнение регрессии 5 = а + b х соответствующего значения х. Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки ух, т. е. Шух, и соответственно интервальной оценкой прогнозного значения (у )
 [c.57]

Чтобы понять, как строится формула для определения величин стандартной ошибки ух, обратимся к уравнению линейной регрессии ух = а + b х. Подставим в это уравнение выражение параметра а  [c.57]

При прогнозировании на основе уравнения регрессии следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения у, но и от точности прогноза значения фактора х. Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.
 [c.61]

В скобках указаны стандартные ошибки параметров уравнения регрессии.
 [c.327]

В скобках указаны стандартные ошибки параметров уравнения регрессии. Определим по этому уравнению расчетные значения >>, ,, а затем параметры уравнения регрессии (7.44). Получим следующие результаты  [c.328]

Стандартные ошибки коэффициентов уравнения регрессии, t — критерий
 [c.7]

На каждом шаге рассматриваются уравнение регрессии, коэффициенты корреляции и детерминации, F-критерий, стандартная ошибка оценки и другие оценочные показатели. После каждого шага перечисленные оценочные показатели сравниваются с
 [c.39]

Проблемы с методологией регрессии. Методология регрессии — это традиционный способ уплотнения больших массивов данных и их сведения в одно уравнение, отражающее связь между мультипликаторами РЕ и финансовыми фундаментальными переменными. Но данный подход имеет свои ограничения. Во-первых, независимые переменные коррелируют друг с другом . Например, как видно из таблицы 18,2, обобщающей корреляцию между коэффициентами бета, ростом и коэффициентами выплат для всех американских фирм, быстрорастущие фирмы обычно имеют большой риск и низкие коэффициенты выплат. Обратите внимание на отрицательную корреляцию между коэффициентами выплат и ростом, а также на положительную корреляцию между коэффициентами бета и ростом. Эта мультиколлинеарность делает мультипликаторы регрессии ненадежными (увеличивает стандартную ошибку) и, возможно, объясняет ошибочные знаки при коэффициентах и крупные изменения этих мультипликаторов в разные периоды. Во-вторых, регрессия основывается на линейной связи между мультипликаторами РЕ и фундаментальными переменными, и данное свойство, по всей вероятности, неадекватно. Анализ остаточных явлений, связанных с корреляцией, может привести к трансформациям независимых переменных (их квадратов или натуральных логарифмов), которые в большей степени подходят для объяснения мультипликаторов РЕ. В-третьих, базовая связь между мультипликаторами РЕ и финансовыми переменными сама по себе не является стабильной. Если же эта связь смещается из года в год, то прогнозы, полученные из регрессионного уравнения, могут оказаться ненадежными для более длительных периодов времени. По всем этим причинам, несмотря на полезность регрессионного анализа, его следует рассматривать только как еще один инструмент поиска подлинного значения ценности.
 [c.649]

На рисунке 16.6 явно просматривается четкая линейная зависимость объема частного потребления от величины располагаемого дохода. Уравнение парной линейной регрессии, оцененное по этим данным, имеет вид С= -217,6 + 1,007 Yf Стандартные ошибки для свободного члена и коэффициента парной регрессии равны, соответственно, 28,4 и 0,012, а -статистики — -7,7 и 81 9. Обе они по модулю существенно превышают 3, следовательно, их статистическая значимость весьма высока. Впрочем, несмотря на то, что здесь удалось оценить статистически значимую линейную функцию потребления, в ней нарушены сразу две предпосылки Кейнса — уровень автономного потребления С0 оказался отрицательным, а предель-
 [c.304]

Стандартные ошибки свободного члена и коэффициента регрессии равны, соответственно, 84,7 и 0,46 их /-статистики — (-21,4 и 36,8). По абсолютной величине /-статистики намного превышают 3, и это свидетельствует о высокой надежности оцененных коэффициентов. Коэффициент детерминации /Р уравнения равен 0,96, то есть объяснено 96% дисперсии объема потребления. И в то же время уже по рисунку видно, что оцененная рефессия не очень хоро-
 [c.320]

Эта стандартная ошибка S у, равная 0,65, указывает отклонение фактических данных от прогнозируемых на основании использования воздействующих факторов j i и Х2 (влияние среди покупателей бабушек с внучками и высокопрофессионального вклада Шарика). В то же время мы располагаем обычным стандартным отклонением Sn, равным 1,06 (см. табл.8), которое было рассчитано для одной переменной, а именно сами текущие значения уги величина среднего арифметического у, которое равно 6,01. Легко видеть, что S у< Sn следовательно, ошибки прогнозирования, как правило, оказываются меньшими, если использовать уравнение регрессии (учитывается вклад факторов j i и Х2), а не ограничиваться только значением у.
 [c.64]

Эти два выражения показывают, как возникает ковариация между [52 и Рз в СИЛУ присутствия 2ыу в каждом из выражений для ошибок Р2 и (33. Положительное и большое значение ос приводит, как мы видим, к большим противоположным значениям ошибок J32 и(33- Если (32 оценивает значение р 2 снизу, то р3 оценивает значение ps сверху, и наоборот. Очень важным является то обстоятельство, что стандартные ошибки могут служить одним из индикаторов наличия мульти-коллинеарности. Формула (5.84) показывает, что истинное значение стандартной ошибки возрастает с увеличением а, однако эта формула содержит неизвестный параметр а . В оцененной величине стандартной ошибки значение а заменяется на Ее2/(п — /г), где 2е2 — сумма квадратов остатков после подгонки уравнения регрессии к эмпирическим данным. Как было показано в (5.19),
 [c.162]

С помощью парной регрессии устанавливается математическая зависимость (в виде уравнения) между метрической зависимой (критериальной) переменной и метрической независимой переменной (предиктором). Уравнение описывает прямую линиию, и для его вывода используют метод наименьших В случае построения регрессии с нормированными данными отрезок, отсекаемый на оси OY, принимает значение, равное 0, и коэффициенты регрессии называют взвешенными Силу тесноты связи измеряют ко-детерминации который получают, вычисляя отношение к Стандартную ошибку уравнения регрессии используют для оценки точности предсказания, и ее можно интерпретировать как род средней ошибки, сделанной при теоретическом предсказании Y, исходя из уравнения регрессии.
 [c.678]

В скобках указаны стандартные ошибки коэффициентов регрессии. «Коэффициенты детерминации рассчитаны по линеаризованным уравнениям регрессии.  [c.237]

Это уравнение намного лучше, чем (5). Все коэффициенты статистически значимы, их коэффициенты по абсолютной величине в 7-10 раз превышают свои стандартные ошибки. Уравнение соответствует макроэкономической теории, говорящей об отрицательной зависимости величины реального чистого экспорта от реального ВНП и валютного курса. Взглянув на рис. 18.7, можно отметить, что рассчитанные по уравнению регрессии величины ВНП за 1965-1990 гг. очень близки к фактическим. Единственной проблемой является то, что статистика Дарбина-Уотсона существенно меньше двух, -таким образом, можно попытаться улучшить это уравнение. При этом мы надеемся избавиться от автокорреляции остатков (то есть, получить более близкую к двум DW) и, возможно, увеличить долю объясненной дисперсии RNX, то есть R2.
 [c.346]

В скобках указаны стандартные ошибки параметров уравнения регрессии. Применение метода инструментальных переменных привело к статистической незначимости параметра С[ = 0,109 при переменной yf . Это произошло ввиду высокой мультиколлинеарности факторов, иyt v. Несмотря на то что результаты, полученные обычным МНК, на первый взгляд лучше, чем результаты применения метода инструментальных переменных, результатам обычного МНК вряд ли можно доверять вследствие нарушения в данной модели его предпосылок. Поскольку ни один из методов не привел к получению достоверных результатов расчетов параметров, следует перейти к получению оценок параметров данной модели авторегрессии методом максимального правдоподобия.
 [c.328]

Нетрудно заметить, что в данном случае не выполняются необходимые предпосылки МНК об отклонениях Si точек наблюдений от линии регрессии (см. параграф 6.1). Эти отклонения явно не обладают постоянной дисперсией и не являются взаимно независимыми. Нарушение необходимых предпосылок делает неточными полученные оценки коэффициентов регрессии, увеличивая их стандартные ошибки, и обычно свидетельствует о неверной спецификации самого уравнения. Поэтому следующим этапом проверки качества уравнения регрессии является проверка выполнимости предпосылок МНК. Причины невыполнимости этих предпосылок, их последствия и методы корректировки будут подробно рассмотрены в последующих главах. В данном разделе мы лишь обозначим эти проблемы, а также обсудим весьма популярную в регрессионном анализе статистику Дарбина— Уотсона.
 [c.164]

В скобках указаны стандартные ошибки соответствующих коэффициентов. Можно отметить, что статистическое качество полученного уравнения регрессии практически идеально. Все г-статистики превышают 5 по абсолютной величине (а, грубо говоря, границей для очень хорошей оценки является 3). Очень высока доля дисперсии зависимой переменной, объясненная с помощью уравнения регрессии, — 94,2% — особенно с учетом того, что уравнение регрессии связывает относительные величины, не имеющие выраженного временного тренда. Статистика Дарбина-Уотсона ЯИ очень близка к 2, и, даже не прибегая к таблицам, здесь ясно, что гипотеза об отсутствии автокорреляции остатков первого порядка будет принята при любом разумно малом уровне значимости. Итак, мы имеем хороший пример линейной регрессии, когда можно оценить ее статистическую значимость, не прибегая к таблицам распределений Стьюден-та, Фишера или Дарбина-Уотсона, а лишь по общему порядку полученных статистик.
 [c.330]

Это уравнение приемлемо по всем параметрам и статистическим характеристикам. Единственное, что имеет смысл сделать в нем, это замена переменных ER и ER на одну переменную ER(-l). Это можно сделать, поскольку абсолютные величины коэффициентов при ER и ER почти одинаковы. В таком случае можно сделать преобразование (-a-ER+aAER) = (-aER + a(ER — ER(-l))=-aER(-l), и мы можем использовать это равенство для сокращения числа объясняющих переменных.1 Включив снова преобразование AR(l) (для которого коэффициент авторегрессии соседних отклонений et получился равен р=0,71, со стандартной ошибкой 0,16), получаем уравнение регрессии  [c.363]

Подобным же образом на основе соответствующих формул рассчитывают стандартные ошибки параметров уравнения регрессии, а затем и t-критерии для каждого параметра. Важно опять-таки проверить, чтобы соблюдалось условие tpa 4 > tTa6n. В противном случае доверять полученной оценке параметра нет оснований.
 [c.139]

Для определения профиля посетителей магазинов местного торгового центра, не имеющих определенной цели (browsers), маркетологи использовали три набора независимых переменных демографические, покупательское поведение психологические. Зависимая переменная представляет собой индекс посещения магазина без определенной цели, индекс (browsing index). Методом ступенчатой включающей все три набора переменных, выявлено, что демографические факторы — наиболее сильные предикторы, определяющие поведение покупателей, не преследующих конкретных целей. Окончательное уравнение регрессии, 20 из 36 возможных переменных, включало все демографические переменные. В следующей таблице приведены коэффициенты регрессии, стандартные ошибки коэффициентов, а также их уровни значимости.
 [c.668]


Когда мы подгоняем регрессионную модель к набору данных, нас часто интересует, насколько хорошо регрессионная модель «подходит» к набору данных. Две метрики, обычно используемые для измерения согласия, включают R -квадрат (R2) и стандартную ошибку регрессии , часто обозначаемую как S.

В этом руководстве объясняется, как интерпретировать стандартную ошибку регрессии (S), а также почему она может предоставить более полезную информацию, чем R 2 .

Стандартная ошибка по сравнению с R-квадратом в регрессии

Предположим, у нас есть простой набор данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их баллы за экзамен:

Пример интерпретации стандартной ошибки регрессии

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии в Excel

R-квадрат — это доля дисперсии переменной отклика, которая может быть объяснена предикторной переменной. При этом 65,76% дисперсии экзаменационных баллов можно объяснить количеством часов, потраченных на учебу.

Стандартная ошибка регрессии — это среднее расстояние, на которое наблюдаемые значения отклоняются от линии регрессии. В этом случае наблюдаемые значения отклоняются от линии регрессии в среднем на 4,89 единицы.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Обратите внимание, что некоторые наблюдения попадают очень близко к линии регрессии, в то время как другие не так близки. Но в среднем наблюдаемые значения отклоняются от линии регрессии на 4,19 единицы .

Стандартная ошибка регрессии особенно полезна, поскольку ее можно использовать для оценки точности прогнозов. Примерно 95% наблюдений должны находиться в пределах +/- двух стандартных ошибок регрессии, что является быстрым приближением к 95% интервалу прогнозирования.

Если мы заинтересованы в прогнозировании с использованием модели регрессии, стандартная ошибка регрессии может быть более полезной метрикой, чем R-квадрат, потому что она дает нам представление о том, насколько точными будут наши прогнозы в единицах измерения.

Чтобы проиллюстрировать, почему стандартная ошибка регрессии может быть более полезной метрикой для оценки «соответствия» модели, рассмотрим другой пример набора данных, который показывает, сколько часов 12 студентов занимались в день в течение месяца, предшествующего важному экзамену, а также их экзаменационная оценка:

Обратите внимание, что это точно такой же набор данных, как и раньше, за исключением того, что все значения s сокращены вдвое.Таким образом, студенты из этого набора данных учились ровно в два раза дольше, чем студенты из предыдущего набора данных, и получили ровно половину экзаменационного балла.

Если мы подгоним простую модель линейной регрессии к этому набору данных в Excel, мы получим следующий результат:

Вывод регрессии из простой линейной модели в Excel

Обратите внимание, что R-квадрат 65,76% точно такой же, как и в предыдущем примере.

Однако стандартная ошибка регрессии составляет 2,095 , что ровно вдвое меньше стандартной ошибки регрессии в предыдущем примере.

Если мы нанесем фактические точки данных вместе с линией регрессии, мы сможем увидеть это более четко:

Диаграмма рассеяния для простой линейной регрессии

Обратите внимание на то, что наблюдения располагаются гораздо плотнее вокруг линии регрессии. В среднем наблюдаемые значения отклоняются от линии регрессии на 2,095 единицы .

Таким образом, несмотря на то, что обе модели регрессии имеют R-квадрат 65,76% , мы знаем, что вторая модель будет давать более точные прогнозы, поскольку она имеет более низкую стандартную ошибку регрессии.

Преимущества использования стандартной ошибки

Стандартную ошибку регрессии (S) часто бывает полезнее знать, чем R-квадрат модели, потому что она дает нам фактические единицы измерения. Если мы заинтересованы в использовании регрессионной модели для получения прогнозов, S может очень легко сказать нам, достаточно ли точна модель для прогнозирования.

Например, предположим, что мы хотим создать 95-процентный интервал прогнозирования, в котором мы можем прогнозировать результаты экзаменов с точностью до 6 баллов от фактической оценки.

Наша первая модель имеет R-квадрат 65,76%, но это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. К счастью, мы также знаем, что у первой модели показатель S равен 4,19. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*4,19 = +/- 8,38 единиц, что слишком велико для нашего интервала прогнозирования.

Наша вторая модель также имеет R-квадрат 65,76%, но опять же это ничего не говорит нам о том, насколько точным будет наш интервал прогнозирования. Однако мы знаем, что вторая модель имеет S 2,095. Это означает, что 95-процентный интервал прогнозирования будет иметь ширину примерно 2*2,095= +/- 4,19 единиц, что меньше 6 и, следовательно, будет достаточно точным для использования для создания интервалов прогнозирования.

Дальнейшее чтение

Введение в простую линейную регрессию
Что такое хорошее значение R-квадрата?

(Оценочная) стандартная ошибка регрессии ( английская (оценочная) стандартная ошибка регрессии, кратко: SER ) и стандартная ошибка , стандартная ошибка оценки ( английская стандартная ошибка оценки ) или квадратный корень из среднеквадратичной ошибки. ( английский корень среднеквадратичной ошибка , RMSE для короткого замыкания ) является мерой точности регрессии в статистике, особенно в регрессионном анализе . Он определяется как квадратный корень из несмещенной оценки для неизвестной дисперсии возмущающих переменных ( остаточная дисперсия ) и может интерпретироваться как квадратный корень из « среднего квадрата невязки » ( среднеквадратичная ошибка английского корня , сокращенно RMSE ), который используется при использовании рассчитанной линии регрессии для прогнозирования возникновения целевых переменных. Он измеряет среднее расстояние между точками данных и линией регрессии. Стандартная ошибка регрессии может использоваться для оценки дисперсии параметров регрессии, поскольку они зависят от неизвестного стандартного отклонения . Стандартная ошибка регрессии и коэффициент детерминации являются наиболее часто используемыми показателями в регрессионном анализе . Однако стандартная ошибка регрессии следует иной философии, чем коэффициент детерминации. В отличие от коэффициента детерминации, который количественно оценивает объясняющую силу модели, стандартная ошибка регрессии дает оценку стандартного отклонения ненаблюдаемых эффектов, которые влияют на результат (или, что то же самое, оценку стандартного отклонения ненаблюдаемые эффекты, которые влияют на результат после того, как эффекты объясняющих переменных были удалены). Стандартная ошибка регрессии обычно отмечается значком или . Иногда это также отмечается. сигма { displaystyle { hat { sigma}}}{ displaystyle { text {SER}}}s

Введение в проблему

«Качество» регрессии может использовать оцененную стандартную ошибку остатков (англ. Residual standard error ) быть оцененным, это один из стандартных выходных данных большинства пакетов статистического программного обеспечения. Расчетная стандартная ошибка остатков указывает на уверенность, с которой остатки приближаются к истинным смешивающим переменным . Таким образом, остатки являются приближением переменных возмущения . Расчетная стандартная ошибка остатков сопоставима с коэффициентом детерминации и скорректированным коэффициентом детерминации и должна интерпретироваться аналогичным образом. Расчетная стандартная остаточная ошибка определяется как
{ Displaystyle { шляпа { varepsilon}} _ {я}} varepsilon_i{ Displaystyle  varepsilon _ {я}  приблизительно { шляпа { varepsilon}} _ {я}}

{ displaystyle { tilde {s}} = { sqrt {{ tfrac {1} {n}}  sum  nolimits _ {i = 1} ^ {n} { hat { varepsilon}} _ {я } ^ {2}}}}.

Следует отметить, однако, что это смещенная оценка от истинной дисперсии искажающих факторов , так как оценки дисперсии используется не несмещенные . Если учесть , что при оценке двух параметров регрессии и теряет две степени свободы, и это компенсируется за счет удерживается образца размером от числа степеней свободы , разделенной, чтобы получить «среднюю Residuenquadrat» ( М edium Q uadratsumme the R esiduen , сокращенно: MQR ) и, следовательно, неискаженное представление. Это объективное представление известно как стандартная ошибка регрессии.
{ Displaystyle { тильда {s}} ^ {2}}{ Displaystyle  sigma _ { varepsilon} ^ {2} =  sigma ^ {2}} beta _ {0} beta _ {1} п (п-2){ Displaystyle MQR = SQR / (n-2)}

определение

Стандартная ошибка регрессии определяется как квадратный корень из несмещенной оценки дисперсии смешивающих переменных , так называемой остаточной дисперсии.

{ displaystyle { hat { sigma}} = + { sqrt {{ hat { sigma}} ^ {2}}}}.

Стандартная ошибка регрессии имеет ту же единицу, что и целевая переменная . Стандартная ошибка регрессии обычно меньше стандартной ошибки значений. Следует отметить, что стандартная ошибка регрессии может либо уменьшаться, либо увеличиваться, если (для данной выборки) к модели регрессии добавляется другая независимая переменная. Это связано с тем, что остаточная сумма квадратов всегда уменьшается, когда в регрессионную модель добавляется другая независимая переменная, но степени свободы также уменьшаются на единицу или p. Поскольку остаточная сумма квадратов находится в числителе, а количество степеней свободы — в знаменателе, невозможно предсказать, какой эффект будет преобладающим. Для вывода стандартной ошибки регрессии обычно предполагается, что остатки некоррелированы , имеют нулевое математическое ожидание и однородную дисперсию ( предположения Гаусса-Маркова ). Если хотя бы одно из этих предположений нарушается, стандартная ошибка регрессии, рассчитанная по приведенной выше формуле, не будет оценивать истинное значение в среднем , т.е. ЧАС. быть предвзятой оценкой неизвестного стандартного отклонения.
у

Простая линейная регрессия

В простой линейной регрессии стандартная ошибка регрессии определяется как

{ displaystyle { hat { sigma}} = + { sqrt {SQR / (n-2)}} = + { sqrt {{ frac {1} {n-2}}  sum  limits _ { i = 1} ^ {n} { hat { varepsilon}} _ {i} ^ {2}}} = + { sqrt {{{ frac {1} {n-2}}  sum  limits _ {i = 1} ^ {n}  left (y_ {i} -b_ {0} -b_ {1} x_ {i}  right) ^ {2}}}}, с оценкой наименьших квадратов и для наклона и точки пересечения .{ displaystyle b_ {1} = { frac { sum  nolimits _ {i = 1} ^ {n} (x_ {i} - { overline {x}}) (y_ {i} - { overline { y}})} { sum  nolimits _ {i = 1} ^ {n} (x_ {i} - { overline {x}}) ^ {2}}} ;}{ displaystyle ; b_ {0} = { overline {y}} - b_ {1} { overline {x}}} beta _ {1} beta _ {0}

Представление не искажено, потому что, включая степени свободы оценок дисперсии, оно соответствует ожиданиям при предположениях Гаусса-Маркова (см. Также оценки дисперсии переменных возмущения ). Стандартная ошибка регрессии рассчитывается как квадратный корень из среднего квадрата остатка и является отдельной мерой качества модели. Он показывает, насколько велико среднее отклонение измеренных значений от линии регрессии. Чем больше стандартная ошибка регрессии, тем хуже линия регрессии описывает распределение измеренных значений. Стандартная ошибка регрессии обычно меньше стандартной ошибки целевой переменной . Коэффициент детерминации указывается чаще, чем стандартная ошибка остатков, хотя стандартная ошибка остатков может быть более полезной при оценке качества соответствия. Если стандартная ошибка регрессии в простой линейной регрессии вставить в формулы дисперсии для и , то можно получить несмещенные оценки для и { Displaystyle  mathbb {E} ({ шляпа { sigma}} ^ {2}) =  sigma ^ {2}}{ displaystyle { hat { sigma}} _ {y}} beta _ {0} beta _ {1}{ displaystyle  sigma _ {{ hat { beta}} _ {0}} ^ {2}}{ displaystyle  sigma _ {{ hat { beta}} _ {1}} ^ {2}}

{ displaystyle { hat { sigma}} _ {{ hat { beta}} _ {0}} ^ {2} = { hat { sigma}} ^ {2} { frac { sum  nolimits _ {i = 1} ^ {n} x_ {i} ^ {2}} {n  sum  nolimits _ {i = 1} ^ {n} (x_ {i} - { overline {x}}) ^ {2}}} ;}и .{ displaystyle ; { hat { sigma}} _ {{ hat { beta}} _ {1}} ^ {2} = { hat { sigma}} ^ {2} { frac {1 } { sum  nolimits _ {i = 1} ^ {n} (x_ {i} - { overline {x}}) ^ {2}}}}

Кроме того, доверительные интервалы могут быть построены с использованием стандартной ошибки остатков .

Множественная линейная регрессия

В множественной линейной регрессии , то стандартная ошибка регрессии определяются

{ displaystyle { hat { sigma}} = + { sqrt {MQR}} = + { sqrt {SQR / (nk-1)}} = + { sqrt { frac {{ hat { varvec) { varepsilon}}} ^ { top} { hat { boldsymbol { varepsilon}}}} {nk-1}}} = + { sqrt { frac { left ( mathbf {y} -  mathbf {X}  mathbf {b}  right) ^ { top}  left ( mathbf {y} -  mathbf {X}  mathbf {b}  right)} {nk-1}}}}с помощью оценщика наименьших квадратов .{ Displaystyle  mathbf {b} = ( mathbf {X} ^ { top}  mathbf {X}) ^ {- 1}  mathbf {X} ^ { top}  mathbf {y}}

Альтернативное представление стандартной ошибки регрессии является следствием того факта, что остаточная сумма квадратов также может быть представлена с использованием порождающей невязки матрицы как . Это дает стандартную ошибку регрессии
{ displaystyle SQR = { hat { varepsilon}}} ^ { top} { hat { varepsilon}}} = { varepsilon}} ^ { top}  mathbf {Q} { boldsymbol { varepsilon }}}

{ displaystyle { hat { sigma}} = { sqrt { frac { mathbf {y} ^ { top}  mathbf {y} -  mathbf {b} ^ { top}  mathbf {X} ^ { top}  mathbf {y}} {np}}} = { sqrt { frac { mathbf {y} ^ { top} { varvec {Q}}  mathbf {y}} {np} }} = { sqrt { frac {{ varepsilon { varepsilon}} ^ { top} { varvec {Q}} { varepsilon}}} {np}}}}

Если заменить неизвестное на известное в стандартном отклонении соответствующего средства оценки параметра , стандартная ошибка коэффициента регрессии возникает из{ displaystyle { sqrt { operatorname {Var} (b_ {j})}}} сигма  hat { sigma} б_ {j}

{ displaystyle  operatorname {SE} (b_ {j}) = { sqrt { frac {{ tfrac {1} {np}}  sum  nolimits _ {i = 1} ^ {n} { has {  varepsilon}} _ {i} ^ {2}} {(1 - { mathit {R}} _ {j} ^ {2})  sum  nolimits _ {i = 1} ^ {n} (x_ { ij} - { overline {x}} _ {j}) ^ {2}}}}}.

Таким образом, размер стандартных ошибок оцененных параметров регрессии зависит от остаточной дисперсии, взаимозависимости объясняющих переменных и разброса соответствующих объясняющих переменных.

Индивидуальные доказательства

  1. Питер Хакл : Введение в эконометрику. 2-е обновленное издание, Pearson Deutschland GmbH, 2008 г., ISBN 978-3-86894-156-2 , стр. 72.
  2. Джеффри Марк Вулдридж: Вводная эконометрика: современный подход. 4-е издание. Nelson Education, 2015, стр.102.
  3. Вернер Тимишль : Прикладная статистика. Введение для биологов и медицинских работников. 2013, издание 3-е, с. 313.
  4. Джеффри Марк Вулдридж: Вводная эконометрика: современный подход. 4-е издание. Nelson Education, 2015, стр.110.
  5. ^ А. Колин Камерон, Правин К. Триведи: Микроэконометрика. Методы и приложения. Издательство Кембриджского университета, 2005, ISBN 0-521-84805-9 , стр.287.
  6. Джеффри Марк Вулдридж: Вводная эконометрика: современный подход. 4-е издание. Nelson Education, 2015, стр. 58.
  7. Джеффри Марк Вулдридж: Вводная эконометрика: современный подход. 5-е издание. Nelson Education, 2015, стр.101.

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Стандартная ошибка регрессии и R-квадрат являются ценными математическими расчетами, которые можно использовать для оценки набора данных. Хотя эти два расчета похожи, между ними есть явные различия, которые делают их применение уникальным. Научившись использовать стандартную ошибку регрессии и R-квадрат, вы сможете улучшить свои аналитические способности и стать более эффективным специалистом. В этой статье мы обсудим, что такое стандартная ошибка регрессии, что такое R-квадрат и как эти два показателя сравниваются, включая ключевые различия в их применении.

Что такое стандартная ошибка регрессии?

Стандартная ошибка регрессии — это мера логической регрессии, которую можно применить к набору данных, чтобы определить, насколько далеко среднее значение в наборе данных находится от линии регрессии данных. Это дает представление о том, насколько точно ваша регрессия соответствует набору данных и насколько уверенно вы должны оценивать значение, полученное с помощью линии регрессии. При проведении анализа значений со стандартной ошибкой регрессии примерно 95% наблюдаемых данных должны находиться на расстоянии менее двух стандартных ошибок регрессии от линии регрессии.

Что означает R-квадрат?

R-квадрат — это регрессионный показатель, применяемый к набору данных и анализирующий взаимосвязь между зависимой и независимой переменными. Нахождение коэффициента R-квадрат показывает, какой процент зависимой переменной можно точно предсказать на основе значения независимой переменной. Более высокое значение R-квадрат указывает на сильную корреляцию между двумя переменными, в то время как низкое значение R-квадрат указывает на то, что между двумя переменными существует менее прямая корреляция. Это может помочь вам определить, насколько предсказуемо вы можете учесть изменения в объеме производства, изменив один из производственных факторов, например.

Стандартная ошибка регрессии против. R-квадрат

Хотя и стандартная ошибка регрессии, и R-квадрат могут дать ценную информацию при оценке набора данных, между ними есть важные различия, которые помогут вам определить, какой из них более полезен или вы можете эффективно применять оба показателя. Ключевые различия между R-квадратом и стандартной ошибкой регрессии включают:

Единицы измерения

Первое существенное различие между этими двумя расчетами заключается в единицах, в которых они возвращают значения. При расчете R-квадрат вы получаете значение в виде десятичной дроби без единиц измерения. Вы можете преобразовать это значение в процент, умножив его на 100. R-квадрат остается таким независимо от единиц, используемых для анализируемой информации.

При расчете стандартной ошибки регрессии вы получаете ответ в тех же единицах, что и ваша независимая переменная. Например, оценка максимальной скорости автомобилей в сравнении с их лошадиными силами даст R-квадрат, измеренный в процентах, и ошибку регрессии, измеренную в милях в час.

Предоставленная информация

Так же, как оба расчета используют разные единицы измерения в своих результатах, стандартная ошибка регрессии и R-квадрат также предоставляют разную информацию, когда вы их используете. Стандартная ошибка регрессии предоставляет конкретную информацию, связанную с точными показателями переменных, которые вы измеряете. Функционируя в единицах, которые вы использовали для измерения зависимой переменной, она показывает, насколько точно вы можете предсказать производительность, основываясь на знании независимой переменной.

R-квадрат не предоставляет вам непосредственно применимую информацию о том, насколько точно вы можете оценить значение на зависимом уровне. Вместо этого она позволяет проанализировать существующие результаты и определить, какую часть показателей зависимой переменной можно напрямую отнести на счет влияния независимой переменной.

Практическое применение

Эти различия в единицах измерения и информации оказывают существенное влияние на практическое применение каждого расчета. Стандартная ошибка регрессии позволяет определить предполагаемые уровни эффективности и уровень доверия к ним. Низкая стандартная ошибка регрессии означает, что ваши данные более плотно прилегают к линии регрессии, и вы можете более точно предсказать результаты на определенном уровне зависимой переменной. Это часто более понятное применение, так как получение информации в единицах, которые вы измеряете, облегчает понимание результатов стандартной ошибки регрессии.

Практическое применение R-квадрат лучше всего использовать для определения взаимосвязи между двумя переменными. Анализ корреляции между зависимой и независимой переменными может помочь вам принимать обоснованные бизнес-решения. Например, выявление сильной связи между качеством компонента и удовлетворенностью клиентов может продемонстрировать ценность инвестиций в более дорогое сырье в процессе производства. Выявление корреляции с низким R-квадрат вместо этого указывает на минимальное влияние на зависимую переменную, если вы внесете изменения в независимую переменную.

Пример стандартной ошибки регрессии против. R-квадрат

Компания проводит анализ эффективности рекламных кампаний, связанных с продажами отдельного продукта в своей линии. Компания ранее провела пять рекламных кампаний, с разными бюджетами для каждого случая. Они создают набор данных, записывая маркетинговый бюджет, выделенный на каждую кампанию, количество продаж, сгенерированных в ходе каждой кампании, и соотношение долларов на продажу для каждой кампании.

Маркетинговый бюджет

Продажи

Коэффициент ($sale)

Стандартная ошибка

1

$6,100

191

32

54.588

2

$13,600

470

29

3

$13,400

574

R-квадрат

4

$13,300

451

0.92001

5

$6,700

221

92%

Используя автоматизированные функции в своей программе электронных таблиц, компания рассчитывает стандартную ошибку регрессии и R-квадрат для маркетинговых данных. В документе получен R-квадрат 92%, что указывает на сильную связь между расходами на маркетинг и продажами, сделанными. Увеличение или уменьшение расходов оказывает значительное достоверное влияние на количество продаж. Расчет стандартной ошибки регрессии дает значение 54.588, что означает, что данные по продажам отличаются от линии регрессии в среднем на 54.588 продажи. Поэтому, оценивая продажи для установленного бюджета, компания может ожидать, что средняя ошибка составит менее 55 от общего объема продаж.

Возможно, вам также будет интересно:

  • Стандартная ошибка прогноза пример
  • Сталкер чистое небо ошибка system ltx
  • Стандартная ошибка регрессии пределы
  • Стандартная ошибка прогноза для множественной регрессии
  • Сталкер чистое небо не запускается на windows 10 x ray ошибка

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии