Стандартная ошибка это корень


Загрузить PDF


Загрузить PDF

Стандартная ошибка оценки служит для того, чтобы выяснить, как линия регрессии соответствует набору данных. Если у вас есть набор данных, полученных в результате измерения, эксперимента, опроса или из другого источника, создайте линию регрессии, чтобы оценить дополнительные данные. Стандартная ошибка оценки характеризует, насколько верна линия регрессии.

  1. Изображение с названием Calculate the Standard Error of Estimate Step 1

    1

    Создайте таблицу с данными. Таблица должна состоять из пяти столбцов, и призвана облегчить вашу работу с данными. Чтобы вычислить стандартную ошибку оценки, понадобятся пять величин. Поэтому разделите таблицу на пять столбцов. Обозначьте эти столбцы так:[1]

  2. Изображение с названием Calculate the Standard Error of Estimate Step 2

    2

    Введите данные в таблицу. Когда вы проведете эксперимент или опрос, вы получите пары данных — независимую переменную обозначим как x, а зависимую или конечную переменную как y. Введите эти значения в первые два столбца таблицы.

    • Не перепутайте данные. Помните, что определенному значению независимой переменной должно соответствовать конкретное значение зависимой переменной.
    • Например, рассмотрим следующий набор пар данных:
      • (1,2)
      • (2,4)
      • (3,5)
      • (4,4)
      • (5,5)
  3. Изображение с названием Calculate the Standard Error of Estimate Step 3

    3

    Вычислите линию регрессии. Сделайте это на основе представленных данных. Эта линия также называется линией наилучшего соответствия или линией наименьших квадратов. Расчет можно сделать вручную, но это довольно утомительно. Поэтому рекомендуем воспользоваться графическим калькулятором или онлайн-сервисом, которые быстро вычислят линию регрессии по вашим данным.[2]

    • В этой статье предполагается, что уравнение линии регрессии дано (известно).
    • В нашем примере линия регрессии описывается уравнением y^{{prime }}=0,6x+2,2.
  4. Изображение с названием Calculate the Standard Error of Estimate Step 4

    4

    Вычислите прогнозируемые значения по линии регрессии. С помощью уравнения линии регрессии можно вычислить прогнозируемые значения «y» для значений «x», которые есть и которых нет в наборе данных.

    Реклама

  1. Изображение с названием Calculate the Standard Error of Estimate Step 5

    1

    Вычислите ошибку каждого прогнозируемого значения. В четвертом столбце таблицы запишите ошибку каждого прогнозируемого значения. В частности, вычтите прогнозируемое значение (y^{{prime }}) из фактического (наблюдаемого) значения (y).[3]

    • В нашем примере вычисления будут выглядеть так:
  2. Изображение с названием Calculate the Standard Error of Estimate Step 6

    2

    Вычислите квадраты ошибок. Возведите в квадрат каждое значение четвертого столбца, а результаты запишите в последнем (пятом) столбце таблицы.

    • В нашем примере вычисления будут выглядеть так:
  3. Изображение с названием Calculate the Standard Error of Estimate Step 7

    3

    Найдите сумму квадратов ошибок. Она пригодится для вычисления стандартного отклонения, дисперсии и других величин. Чтобы найти сумму квадратов ошибок, сложите все значения пятого столбца. [4]

    • В нашем примере вычисления будут выглядеть так:
      • 0,64+0,36+1,0+0,36+0,04=2,4
  4. Изображение с названием Calculate the Standard Error of Estimate Step 8

    4

    Завершите расчеты. Стандартная ошибка оценки — это квадратный корень из среднего значения суммы квадратов ошибок. Обычно ошибка оценки обозначается греческой буквой sigma. Поэтому сначала разделите сумму квадратов ошибок на число пар данных. А потом из полученного значения извлеките квадратный корень.[5]

    • Если рассматриваемые данные представляют всю совокупность, среднее значение находится так: сумму нужно разделить на N (количество пар данных). Если же рассматриваемые данные представляют некоторую выборку, вместо N подставьте N-2.
    • В нашем примере, скорее всего, имеет место выборка, потому что мы рассматриваем всего 5 пар данных. Поэтому стандартную ошибку оценки вычислите следующим образом:
  5. Изображение с названием Calculate the Standard Error of Estimate Step 9

    5

    Интерпретируйте полученный результат. Стандартная ошибка оценки — это статистический показатель, которые оценивает, насколько близко измеренные данные лежат к линии регрессии. Ошибка оценка «0» означает, что каждая точка лежит непосредственно на линии. Чем выше ошибка оценки, тем дальше от линии регрессии лежат точки.[6]

    • В нашем примере выборка достаточно маленькая, поэтому стандартная оценка ошибки 0,894 является довольно низкой и характеризует близко расположенные данные.

    Реклама

Об этой статье

Эту страницу просматривали 4133 раза.

Была ли эта статья полезной?

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

формула средней арифметической

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Формула дисперсии средней арифметической

Используя более привычные обозначения, формулу записывают как:

Дисперсия средней арифметической

где σ2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Дисперсия средней арифметической по выборке

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Стандартная ошибка средней

Формула стандартной ошибки средней при использовании выборочной дисперсии

Стандартная ошибка средней по выборке

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Стандартная ошибка выборочной средней

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Зависимость стандартной ошибки средней от объем выборки

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Распределение исходных данных и средней

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Поделиться в социальных сетях:

Стандартная ошибка появляется при прогнозировании каких-либо данных или арифметических вычислениях, поэтому важно научиться находить этот параметр. В этой публикации разбираем, как найти и исправить стандартную ошибку путем использования инструментов Excel.

Расчет средней арифметической ошибки

В Microsoft Excel цельность и однородность выборки определяется при помощи стандартной ошибки. Стандартная ошибка — это квадратный корень из дисперсии. В приложении предусмотрено два варианта поиска стандартной ошибки: при помощи пакетного анализа и расширенных функций программы.
Чтобы найти значение средней арифметической, необходимо выполнить деление суммарной величины выборки на ее количество в электронной книге.

Расчет стандартной ошибки при помощи встроенных функций

Для того, чтобы правильно вычислять, необходимо изучить пошаговую инструкцию. В этом способе подбор результатов будет осуществляться с помощью комбинированных манипуляций.

  1. Для расчетов будем использовать таблицу с выборкой чисел. Кликаем на любой пустой ячейке на листе, где будет отображаться результат. Затем нажимаем кнопку «Вставить функцию.

№ 14.png

  1. Далее перед вами открывается диалоговое окно, в котором необходимо использовать «СТАНДОТКЛ.В», для этого в поле «Категория» необходимо выбрать «Полный алфавитный перечень». Затем нажмите кнопку «ОК».

№ 15.png

  1. В окне «Аргументы функции» кликаем в первом поле «Число 1», затем выполняем выделение мышью диапазона ячеек со значениями таблицы и нажимаем кнопку «ОК».

№ 16.png

  1. Далее активируем ячейку с нашими значениями, переходим в строку формулы и ставим после значений наклонную линию. Переходим в поле наименования, кликаем на указывающий вниз флажок, где из списка выбираем «Другие функции».

№ 17.png

  1. Снова активируется окно с перечнем функций, в котором необходимо выбрать категорию «Математические», затем функцию «Корень». Далее нажмите кнопку «ОК».

№ 18.png

  1. Далее открывается окно, в котором необходимо заполнить поле с числом. Для этого переходим в поле «Имя», где спускаемся к пункту «Счет». Если его нет, ищите в дополнительных функциях.

№ 19.png

После выполнения этих шагов, стандартная ошибка высчитывается автоматически, пользователю остается только сверить их и проверить значение на некорректное отображение.

Важно!

Для малых и стандартных выборок необходимо использовать разные формулы. В первом случае (если находится до 30 значений), ее необходимо видоизменить.

Решение задачи с помощью опции «Описательная статистика»

Благодаря опции «Описательная статистика» удается выполнить вычисление по различным критериям. По этим правилам удается найти среднюю арифметическую ошибку. Для использования данного метода предварительно нужно запустить «Пакет анализа».

  1. Переходим во вкладку «Файл», где перемещаемся в пункт «Параметры». Далее нажимаем на запись «Надстройки».

№ 20.png

  1. Открывается окошко, в нем в графе «Управление» должно быть прописано «Надстройки Excel», затем рядом нажимаем кнопку «Параметры».

№ 21.png

  1. В появившемся окне находим «Пакет анализа» и нажимаем кнопку «ОК».

№ 22.png

  1. Далее выбираем любую свободную ячейку, переходим во вкладку «Данные» и нажимаем «Анализ данных» в блоке «Анализ».

№ 23.png

  1. Происходит запуск вспомогательного окошка, в котором необходимо выбрать из всех инструментов «Описательную статистику» и нажать кнопку «ОК».

№ 24.png

  1. Открывается новый мастер значений. Здесь нужно вводить данные предельно внимательно. В поле «Входной интервал» вносим адрес диапазона ячеек с выборкой. Затем указываем параметр «Группирование» «По столбцам». Затем выбираем место для «выходного интервала», его должно быть столько же, сколько и «входного». Ставим галочку напротив «Итоговая статистика» и нажимаем кнопку «ОК».

№ 25.png

В результате вычислений вы получаете небольшую таблицу, в которой указаны все данные с определенной стандартной ошибкой.

Содержание

  • Расчет ошибки средней арифметической
    • Способ 1: расчет с помощью комбинации функций
    • Способ 2: применение инструмента «Описательная статистика»
  • Вопросы и ответы

Ошибка средней арифметической в Microsoft Excel

Стандартная ошибка или, как часто называют, ошибка средней арифметической, является одним из важных статистических показателей. С помощью данного показателя можно определить неоднородность выборки. Он также довольно важен при прогнозировании. Давайте узнаем, какими способами можно рассчитать величину стандартной ошибки с помощью инструментов Microsoft Excel.

Расчет ошибки средней арифметической

Одним из показателей, которые характеризуют цельность и однородность выборки, является стандартная ошибка. Эта величина представляет собой корень квадратный из дисперсии. Сама дисперсия является средним квадратном от средней арифметической. Средняя арифметическая вычисляется делением суммарной величины объектов выборки на их общее количество.

В Экселе существуют два способа вычисления стандартной ошибки: используя набор функций и при помощи инструментов Пакета анализа. Давайте подробно рассмотрим каждый из этих вариантов.

Способ 1: расчет с помощью комбинации функций

Прежде всего, давайте составим алгоритм действий на конкретном примере по расчету ошибки средней арифметической, используя для этих целей комбинацию функций. Для выполнения задачи нам понадобятся операторы СТАНДОТКЛОН.В, КОРЕНЬ и СЧЁТ.

Для примера нами будет использована выборка из двенадцати чисел, представленных в таблице.

Выборка в Microsoft Excel

  1. Выделяем ячейку, в которой будет выводиться итоговое значение стандартной ошибки, и клацаем по иконке «Вставить функцию».
  2. Переход в Мастер функций в Microsoft Excel

  3. Открывается Мастер функций. Производим перемещение в блок «Статистические». В представленном перечне наименований выбираем название «СТАНДОТКЛОН.В».
  4. Переход в окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  5. Запускается окно аргументов вышеуказанного оператора. СТАНДОТКЛОН.В предназначен для оценивания стандартного отклонения при выборке. Данный оператор имеет следующий синтаксис:

    =СТАНДОТКЛОН.В(число1;число2;…)

    «Число1» и последующие аргументы являются числовыми значениями или ссылками на ячейки и диапазоны листа, в которых они расположены. Всего может насчитываться до 255 аргументов этого типа. Обязательным является только первый аргумент.

    Итак, устанавливаем курсор в поле «Число1». Далее, обязательно произведя зажим левой кнопки мыши, выделяем курсором весь диапазон выборки на листе. Координаты данного массива тут же отображаются в поле окна. После этого клацаем по кнопке «OK».

  6. Окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  7. В ячейку на листе выводится результат расчета оператора СТАНДОТКЛОН.В. Но это ещё не ошибка средней арифметической. Для того, чтобы получить искомое значение, нужно стандартное отклонение разделить на квадратный корень от количества элементов выборки. Для того, чтобы продолжить вычисления, выделяем ячейку, содержащую функцию СТАНДОТКЛОН.В. После этого устанавливаем курсор в строку формул и дописываем после уже существующего выражения знак деления (/). Вслед за этим клацаем по пиктограмме перевернутого вниз углом треугольника, которая располагается слева от строки формул. Открывается список недавно использованных функций. Если вы в нем найдете наименование оператора «КОРЕНЬ», то переходите по данному наименованию. В обратном случае жмите по пункту «Другие функции…».
  8. Переход к дальнейшему продолжению написания формулы стандартной ошибки в Microsoft Excel

  9. Снова происходит запуск Мастера функций. На этот раз нам следует посетить категорию «Математические». В представленном перечне выделяем название «КОРЕНЬ» и жмем на кнопку «OK».
  10. Переход в окно аргументов функции КОРЕНЬ в Microsoft Excel

  11. Открывается окно аргументов функции КОРЕНЬ. Единственной задачей данного оператора является вычисление квадратного корня из заданного числа. Его синтаксис предельно простой:

    =КОРЕНЬ(число)

    Lumpics.ru

    Как видим, функция имеет всего один аргумент «Число». Он может быть представлен числовым значением, ссылкой на ячейку, в которой оно содержится или другой функцией, вычисляющей это число. Последний вариант как раз и будет представлен в нашем примере.

    Устанавливаем курсор в поле «Число» и кликаем по знакомому нам треугольнику, который вызывает список последних использованных функций. Ищем в нем наименование «СЧЁТ». Если находим, то кликаем по нему. В обратном случае, опять же, переходим по наименованию «Другие функции…».

  12. Окно аргументов функции КОРЕНЬ в Microsoft Excel

  13. В раскрывшемся окне Мастера функций производим перемещение в группу «Статистические». Там выделяем наименование «СЧЁТ» и выполняем клик по кнопке «OK».
  14. Переход в окно аргументов функции СЧЁТ в Microsoft Excel

  15. Запускается окно аргументов функции СЧЁТ. Указанный оператор предназначен для вычисления количества ячеек, которые заполнены числовыми значениями. В нашем случае он будет подсчитывать количество элементов выборки и сообщать результат «материнскому» оператору КОРЕНЬ. Синтаксис функции следующий:

    =СЧЁТ(значение1;значение2;…)

    В качестве аргументов «Значение», которых может насчитываться до 255 штук, выступают ссылки на диапазоны ячеек. Ставим курсор в поле «Значение1», зажимаем левую кнопку мыши и выделяем весь диапазон выборки. После того, как его координаты отобразились в поле, жмем на кнопку «OK».

  16. Окно аргументов функции СЧЁТ в Microsoft Excel

  17. После выполнения последнего действия будет не только рассчитано количество ячеек заполненных числами, но и вычислена ошибка средней арифметической, так как это был последний штрих в работе над данной формулой. Величина стандартной ошибки выведена в ту ячейку, где размещена сложная формула, общий вид которой в нашем случае следующий:

    =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13))

    Результат вычисления ошибки средней арифметической составил 0,505793. Запомним это число и сравним с тем, которое получим при решении поставленной задачи следующим способом.

Результат вычисления стандартной ошибки в сложной формуле в Microsoft Excel

Но дело в том, что для малых выборок (до 30 единиц) для большей точности лучше применять немного измененную формулу. В ней величина стандартного отклонения делится не на квадратный корень от количества элементов выборки, а на квадратный корень от количества элементов выборки минус один. Таким образом, с учетом нюансов малой выборки наша формула приобретет следующий вид:

=СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)-1)

Результат вычисления стандартной ошибки для малой выборки в Microsoft Excel

Урок: Статистические функции в Экселе

Способ 2: применение инструмента «Описательная статистика»

Вторым вариантом, с помощью которого можно вычислить стандартную ошибку в Экселе, является применение инструмента «Описательная статистика», входящего в набор инструментов «Анализ данных» («Пакет анализа»). «Описательная статистика» проводит комплексный анализ выборки по различным критериям. Одним из них как раз и является нахождение ошибки средней арифметической.

Но чтобы воспользоваться данной возможностью, нужно сразу активировать «Пакет анализа», так как по умолчанию в Экселе он отключен.

  1. После того, как открыт документ с выборкой, переходим во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Далее, воспользовавшись левым вертикальным меню, перемещаемся через его пункт в раздел «Параметры».
  4. Перемещение в раздел Параметры в Microsoft Excel

  5. Запускается окно параметров Эксель. В левой части данного окна размещено меню, через которое перемещаемся в подраздел «Надстройки».
  6. Переход в подраздел надстройки окна параметров в Microsoft Excel

  7. В самой нижней части появившегося окна расположено поле «Управление». Выставляем в нем параметр «Надстройки Excel» и жмем на кнопку «Перейти…» справа от него.
  8. Переход в окно надстроек в Microsoft Excel

  9. Запускается окно надстроек с перечнем доступных скриптов. Отмечаем галочкой наименование «Пакет анализа» и щелкаем по кнопке «OK» в правой части окошка.
  10. Включение пакета анализа в окне надстроек в Microsoft Excel

  11. После выполнения последнего действия на ленте появится новая группа инструментов, которая имеет наименование «Анализ». Чтобы перейти к ней, щелкаем по названию вкладки «Данные».
  12. Переход во вкладку Данные в Microsoft Excel

  13. После перехода жмем на кнопку «Анализ данных» в блоке инструментов «Анализ», который расположен в самом конце ленты.
  14. Переход в Анализ данных в Microsoft Excel

  15. Запускается окошко выбора инструмента анализа. Выделяем наименование «Описательная статистика» и жмем на кнопку «OK» справа.
  16. Переход в описательную статистику в Microsoft Excel

  17. Запускается окно настроек инструмента комплексного статистического анализа «Описательная статистика».

    В поле «Входной интервал» необходимо указать диапазон ячеек таблицы, в которых находится анализируемая выборка. Вручную это делать неудобно, хотя и можно, поэтому ставим курсор в указанное поле и при зажатой левой кнопке мыши выделяем соответствующий массив данных на листе. Его координаты тут же отобразятся в поле окна.

    В блоке «Группирование» оставляем настройки по умолчанию. То есть, переключатель должен стоять около пункта «По столбцам». Если это не так, то его следует переставить.

    Галочку «Метки в первой строке» можно не устанавливать. Для решения нашего вопроса это не важно.

    Далее переходим к блоку настроек «Параметры вывода». Здесь следует указать, куда именно будет выводиться результат расчета инструмента «Описательная статистика»:

    • На новый лист;
    • В новую книгу (другой файл);
    • В указанный диапазон текущего листа.

    Давайте выберем последний из этих вариантов. Для этого переставляем переключатель в позицию «Выходной интервал» и устанавливаем курсор в поле напротив данного параметра. После этого клацаем на листе по ячейке, которая станет верхним левым элементом массива вывода данных. Её координаты должны отобразиться в поле, в котором мы до этого устанавливали курсор.

    Далее следует блок настроек определяющий, какие именно данные нужно вводить:

    • Итоговая статистика;
    • К-ый наибольший;
    • К-ый наименьший;
    • Уровень надежности.

    Для определения стандартной ошибки обязательно нужно установить галочку около параметра «Итоговая статистика». Напротив остальных пунктов выставляем галочки на свое усмотрение. На решение нашей основной задачи это никак не повлияет.

    После того, как все настройки в окне «Описательная статистика» установлены, щелкаем по кнопке «OK» в его правой части.

  18. Окно описаительная статистика в Microsoft Excel

  19. После этого инструмент «Описательная статистика» выводит результаты обработки выборки на текущий лист. Как видим, это довольно много разноплановых статистических показателей, но среди них есть и нужный нам – «Стандартная ошибка». Он равен числу 0,505793. Это в точности тот же результат, который мы достигли путем применения сложной формулы при описании предыдущего способа.

Результат расчета стандартной ошибки путем применения инструмента Описательная статистика в Microsoft Excel

Урок: Описательная статистика в Экселе

Как видим, в Экселе можно произвести расчет стандартной ошибки двумя способами: применив набор функций и воспользовавшись инструментом пакета анализа «Описательная статистика». Итоговый результат будет абсолютно одинаковый. Поэтому выбор метода зависит от удобства пользователя и поставленной конкретной задачи. Например, если ошибка средней арифметической является только одним из многих статистических показателей выборки, которые нужно рассчитать, то удобнее воспользоваться инструментом «Описательная статистика». Но если вам нужно вычислить исключительно этот показатель, то во избежание нагромождения лишних данных лучше прибегнуть к сложной формуле. В этом случае результат расчета уместится в одной ячейке листа.

Для значения, которое выбирается с несмещенной ошибкой с нормальным распределением , приведенное выше показывает долю выборок, которая будет находиться между 0, 1, 2 и 3 стандартными отклонениями выше и ниже фактического значения.

Стандартная ошибка ( SE ) [1] [2] из статистики (обычно подсчет параметра ) является стандартным отклонением ее выборочным распределения [3] или оценка этого стандартного отклонения. Если статистика является выборочным средним, это называется стандартной ошибкой среднего ( SEM ). [2]

Распределение выборки из среднего генерируется путем повторного отбора образцов из того же населения и записи средств , полученных образцов. Это формирует распределение различных средних, и это распределение имеет собственное среднее значение и дисперсию . Математически дисперсия полученного распределения выборки равна дисперсии генеральной совокупности, деленной на размер выборки. Это связано с тем, что по мере увеличения размера выборки средние значения выборки сгруппируются более близко к среднему значению генеральной совокупности.

Следовательно, соотношение между стандартной ошибкой среднего и стандартным отклонением таково, что для данного размера выборки стандартная ошибка среднего равна стандартному отклонению, деленному на квадратный корень из размера выборки. [2] Другими словами, стандартная ошибка среднего — это мера разброса средних значений выборки вокруг среднего значения генеральной совокупности.

В регрессионном анализе термин «стандартная ошибка» относится либо к квадратному корню из приведенной статистики хи-квадрат , либо к стандартной ошибке для конкретного коэффициента регрессии (который используется, например, в доверительных интервалах ).

Стандартная ошибка среднего

Точное значение

Если статистически независимая выборка наблюдения берутся из статистической совокупности с стандартным отклонением от, то среднее значение, рассчитанное по выборке будет связана стандартная ошибка среднего предоставлено: [2]

.

На практике это говорит нам о том, что при попытке оценить значение среднего по совокупности из-за фактора для уменьшения ошибки оценки в два раза требуется получить в четыре раза больше наблюдений в выборке; уменьшение его в десять раз требует в сто раз больше наблюдений.

Оценить

Стандартное отклонение о выборке населения известно редко. Поэтому стандартная ошибка среднего обычно оценивается заменойсо стандартным отклонением выборки вместо:

.

Поскольку это только оценка истинной «стандартной ошибки», здесь часто встречаются другие обозначения, такие как:

или поочередно .

Обычный источник путаницы возникает, когда не удается четко различить стандартное отклонение совокупности (), стандартное отклонение выборки (), стандартное отклонение самого среднего (, которая является стандартной ошибкой), и оценка стандартного отклонения среднего (, которая является наиболее часто вычисляемой величиной, которую также часто называют стандартной ошибкой ).

Точность оценщика

Когда размер выборки невелик, использование стандартного отклонения выборки вместо истинного стандартного отклонения генеральной совокупности будет иметь тенденцию к систематическому занижению стандартного отклонения генеральной совокупности, а, следовательно, и стандартной ошибки. При n = 2 занижение составляет около 25%, но для n = 6 занижение составляет всего 5%. Гурланд и Трипати (1971) предлагают поправку и уравнение для этого эффекта. [4] Сокал и Рольф (1981) приводят уравнение поправочного коэффициента для малых выборок n <20. [5] См. Несмещенную оценку стандартного отклонения для дальнейшего обсуждения.

Вывод

Стандартная ошибка среднего может быть получена из дисперсии суммы независимых случайных величин [6] с учетом определения дисперсии и некоторых ее простых свойств . Если находятся независимые наблюдения от популяции со средним и стандартное отклонение , то мы можем определить общую

которые по формуле Биенайме будут иметь дисперсию

Среднее значение этих измерений просто дается

.

Тогда дисперсия среднего составляет

Стандартная ошибка — это, по определению, стандартное отклонение который представляет собой просто квадратный корень из дисперсии:

.

Для коррелированных случайных величин дисперсия выборки должна быть вычислена в соответствии с центральной предельной теоремой Маркова .

Независимые и одинаково распределенные случайные величины со случайным размером выборки

Бывают случаи, когда образец берут, не зная заранее, сколько наблюдений будет приемлемым по какому-либо критерию. В таких случаях размер выборки случайная величина, вариация которой добавляет к вариации такой, что,

[7]

Если имеет распределение Пуассона , то с оценщиком . Следовательно, оценка становится , приводя к следующей формуле для стандартной ошибки:

(поскольку стандартное отклонение — это квадратный корень из дисперсии)

Аппроксимация Стьюдента, когда значение σ неизвестно

Во многих практических приложениях истинное значение σ неизвестно. В результате нам нужно использовать распределение, которое учитывает этот разброс возможных σ ‘с. Когда известно, что истинное базовое распределение является гауссовым, хотя и с неизвестным σ, тогда полученное оцененное распределение следует t-распределению Стьюдента. Стандартная ошибка — это стандартное отклонение t-распределения Стьюдента. Т-распределения немного отличаются от гауссовых и меняются в зависимости от размера выборки. Небольшие выборки с большей вероятностью недооценивают стандартное отклонение совокупности и имеют среднее значение, которое отличается от истинного среднего значения совокупности, а t-распределение Стьюдента учитывает вероятность этих событий с несколько более тяжелыми хвостами по сравнению с гауссовым. Для оценки стандартной ошибки t-распределения Стьюдента достаточно использовать выборочное стандартное отклонение «s» вместо σ , и мы могли бы использовать это значение для вычисления доверительных интервалов.

Примечание. Распределение вероятностей Стьюдента хорошо аппроксимируется распределением Гаусса, когда размер выборки превышает 100. Для таких выборок можно использовать последнее распределение, которое намного проще.

Предположения и использование

Пример того, как используется, чтобы сделать доверительные интервалы неизвестного среднего значения в генеральной совокупности. Если распределение выборки имеет нормальное распределение , среднее значение выборки, стандартная ошибка и квантили нормального распределения могут использоваться для расчета доверительных интервалов для истинного среднего значения генеральной совокупности. Следующие выражения можно использовать для расчета верхнего и нижнего 95% доверительных интервалов, где равно выборочному среднему, равна стандартной погрешности для выборочного среднего и 1,96 приблизительное значение 97,5 процентиля точки нормального распределения :

Верхний предел 95% а также
Нижний предел 95%

В частности, стандартная ошибка выборочной статистики (например, выборочное среднее ) — это фактическое или расчетное стандартное отклонение выборочного среднего в процессе, в котором оно было создано. Другими словами, это фактическое или оценочное стандартное отклонение выборочного распределения статистической выборки. Обозначение для стандартной ошибки может быть любым из SE, SEM (для стандартной ошибки измерения или среднего ), или S E .

Стандартные ошибки обеспечивают простые меры неопределенности значения и часто используются, потому что:

  • во многих случаях, если известна стандартная ошибка нескольких отдельных величин, то стандартную ошибку некоторой функции величин можно легко вычислить;
  • когда распределение вероятностей значения известно, его можно использовать для вычисления точного доверительного интервала ;
  • когда распределение вероятностей неизвестно, для расчета консервативного доверительного интервала можно использовать неравенства Чебышева или Высочанского – Петунина ; а также
  • поскольку размер выборки стремится к бесконечности, центральная предельная теорема гарантирует, что выборочное распределение среднего является асимптотически нормальным .

Стандартная ошибка среднего значения по сравнению со стандартным отклонением

В научно-технической литературе экспериментальные данные часто обобщаются либо с использованием среднего значения и стандартного отклонения выборочных данных, либо среднего значения со стандартной ошибкой. Это часто приводит к путанице в отношении их взаимозаменяемости. Однако среднее значение и стандартное отклонение являются описательной статистикой , тогда как стандартная ошибка среднего описывает процесс случайной выборки. Стандартное отклонение данных выборки — это описание вариации в измерениях, в то время как стандартная ошибка среднего — это вероятностное утверждение о том, как размер выборки обеспечит лучшую границу оценок среднего для генеральной совокупности в свете центрального предела. теорема. [8]

Проще говоря, стандартная ошибка выборочного среднего — это оценка того, насколько далеко среднее значение выборки может быть от среднего значения по совокупности, тогда как стандартное отклонение выборки — это степень, в которой отдельные лица в выборке отличаются от выборочного среднего. [9] Если стандартное отклонение генеральной совокупности конечно, стандартная ошибка среднего значения выборки будет стремиться к нулю с увеличением размера выборки, потому что оценка генерального среднего будет улучшаться, в то время как стандартное отклонение выборки будет иметь тенденцию приближаться стандартное отклонение генеральной совокупности при увеличении размера выборки.

Расширения

Поправка на конечную популяцию (FPC)

Приведенная выше формула для стандартной ошибки предполагает, что размер выборки намного меньше, чем размер генеральной совокупности, так что совокупность может считаться фактически бесконечной по размеру. Обычно это имеет место даже в случае конечных популяций, потому что большую часть времени люди в первую очередь заинтересованы в управлении процессами, которые создали существующую конечную популяцию; это называется аналитическим исследованием вслед за У. Эдвардсом Демингом . Если люди заинтересованы в управлении существующей конечной совокупностью, которая не будет меняться с течением времени, то необходимо сделать поправку на размер популяции; это называется перечислительным исследованием .

Когда доля выборки (часто называемая f ) велика (примерно 5% или более) в переписном исследовании , оценка стандартной ошибки должна быть скорректирована путем умножения на «поправку на конечную совокупность» (также известную как fpc ): [10]
[11]

что для больших N :

чтобы учесть дополнительную точность, полученную за счет выборки, близкой к большему проценту населения. Эффект FPC является то , что ошибка становится равной нулю , когда размер выборки п равен размеру популяции N .

Это происходит в методологии обследования при выборке без замены . Если выборка с заменой, то FPC не играет роли.

Поправка на корреляцию в образце

Ожидаемая ошибка среднего значения A для выборки из n точек данных с коэффициентом смещения выборки  ρ . Несмещенная стандартная ошибка строится как  диагональная линия ρ = 0 с логарифмическим наклоном −½.

Если значения измеренной величины A не являются статистически независимыми, но были получены из известных мест в пространстве параметров  x , несмещенная оценка истинной стандартной ошибки среднего (фактически поправка на часть стандартного отклонения) может быть получена путем умножения рассчитанная стандартная ошибка выборки по коэффициенту  f :

где коэффициент смещения выборки ρ представляет собой широко используемую оценку Прайса – Винстена коэффициента автокорреляции (величина от -1 до +1) для всех пар точек выборки. Эта приблизительная формула предназначена для выборки среднего и большого размера; Справочник дает точные формулы для любого размера выборки и может применяться к сильно автокоррелированным временным рядам, таким как котировки акций Уолл-стрит. Более того, эта формула работает как для положительных, так и для отрицательных значений ρ. [12] См. Также объективную оценку стандартного отклонения для более подробного обсуждения.

См. Также

  • Иллюстрация центральной предельной теоремы
  • Допустимая погрешность
  • Вероятная ошибка
  • Стандартная ошибка средневзвешенного значения
  • Среднее значение выборки и ковариация выборки
  • Стандартная ошибка медианы
  • Дисперсия

Ссылки

  1. ^ «Список вероятностных и статистических символов» . Математическое хранилище . 2020-04-26 . Проверено 12 сентября 2020 .
  2. ^ a b c d Альтман, Дуглас Дж. Блэнд, Дж. Мартин (2005-10-15). «Стандартные отклонения и стандартные ошибки» . BMJ: Британский медицинский журнал . 331 (7521): 903. DOI : 10.1136 / bmj.331.7521.903 . ISSN 0959-8138 . PMC 1255808 . PMID 16223828 .   
  3. ^ Everitt, BS (2003). Кембриджский статистический словарь . ЧАШКА. ISBN 978-0-521-81099-9.
  4. ^ Gurland, J; Трипати RC (1971). «Простое приближение для объективной оценки стандартного отклонения». Американский статистик . 25 (4): 30–32. DOI : 10.2307 / 2682923 . JSTOR 2682923 . 
  5. ^ Сокаль; Рольф (1981). Биометрия: принципы и практика статистики в биологических исследованиях (2-е изд.). п. 53 . ISBN 978-0-7167-1254-1.
  6. Перейти ↑ Hutchinson, TP (1993). Основы статистических методов, на 41 странице . Аделаида: Рамсби. ISBN 978-0-646-12621-0.
  7. ^ Корнелл, младший, и Бенджамин, Калифорния, Вероятность, статистика и решения для инженеров-строителей, McGraw-Hill, NY, 1970, ISBN 0486796094 , стр. 178–9. 
  8. ^ Бард, М. (2012). «Что использовать для выражения изменчивости данных: стандартное отклонение или стандартная ошибка среднего?» . Перспектива. Clin. Res. 3 (3): 113–116. DOI : 10.4103 / 2229-3485.100662 . PMC 3487226 . PMID 23125963 .   
  9. ^ Wassertheil-Smoller, Sylvia (1995). Биостатистика и эпидемиология: учебник для медицинских работников (второе изд.). Нью-Йорк: Спрингер. С. 40–43. ISBN 0-387-94388-9.
  10. ^ Isserlis, Л. (1918). «О значении среднего, рассчитанного по выборке» . Журнал Королевского статистического общества . 81 (1): 75–81. DOI : 10.2307 / 2340569 . JSTOR 2340569 .  (Уравнение 1)
  11. ^ Бонди, Уоррен; Злот, Уильям (1976). «Стандартная ошибка среднего и разница между средними для конечных совокупностей». Американский статистик . 30 (2): 96–97. DOI : 10.1080 / 00031305.1976.10479149 . JSTOR 2683803 .   (Уравнение 2)
  12. ^ Бенс, Джеймс Р. (1995). «Анализ коротких временных рядов: поправка на автокорреляцию» . Экология . 76 (2): 628–639. DOI : 10.2307 / 1941218 . JSTOR 1941218 . 


Автор:

Laura McKinney


Дата создания:

7 Апрель 2021


Дата обновления:

27 Январь 2023


Стандартное отклонение vs стандартная ошибка среднего

Видео: Стандартное отклонение vs стандартная ошибка среднего

Содержание

  • Сравнительная таблица
  • Определение стандартного отклонения
  • Определение стандартной ошибки
  • Ключевые различия между стандартным отклонением и стандартной ошибкой
  • Вывод

Стандартное отклонение определяется как абсолютная мера дисперсии ряда. Он уточняет стандартную величину отклонения по обе стороны от среднего. Его часто неправильно истолковывают со стандартной ошибкой, поскольку он основан на стандартном отклонении и размере выборки.

Стандартная ошибка используется для измерения статистической точности оценки. Он в основном используется в процессе проверки гипотез и оценки интервала.

Это две важные концепции статистики, которые широко используются в области исследований. Разница между стандартным отклонением и стандартной ошибкой основана на различии между описанием данных и их выводом.

Сравнительная таблица

Основа для сравнения Стандартное отклонение Стандартная ошибка
Имея в виду Стандартное отклонение подразумевает меру отклонения набора значений от их среднего. Стандартная ошибка означает меру статистической точности оценки.
Статистика Описательный Логический
Меры Насколько наблюдения отличаются друг от друга. Насколько точно среднее значение выборки соответствует истинному среднему значению генеральной совокупности.
Распределение Распределение наблюдения относительно нормальной кривой. Распределение оценки относительно нормальной кривой.
Формула Корень квадратный из дисперсии Стандартное отклонение, деленное на квадратный корень из размера выборки.
Увеличение размера выборки Дает более конкретную меру стандартного отклонения. Уменьшает стандартную ошибку.

Определение стандартного отклонения

Стандартное отклонение — это мера разброса ряда или расстояния от стандарта. В 1893 году Карл Пирсон ввел понятие стандартного отклонения, которое, несомненно, является наиболее часто используемой мерой в научных исследованиях.

Это квадратный корень из среднего квадрата отклонений от их среднего значения. Другими словами, для данного набора данных стандартное отклонение — это среднеквадратичное отклонение от среднего арифметического. Для всего населения он обозначается греческой буквой «сигма (σ)», а для выборки — латинской буквой «s».

Стандартное отклонение — это мера, которая количественно определяет степень дисперсии набора наблюдений. Чем дальше точки данных от среднего значения, тем больше отклонение в наборе данных, что означает, что точки данных разбросаны по более широкому диапазону значений и наоборот.

Определение стандартной ошибки

Вы могли заметить, что разные выборки одинакового размера, взятые из одной и той же совокупности, дадут разные значения рассматриваемой статистики, т.е. выборочное среднее. Стандартная ошибка (SE) представляет собой стандартное отклонение различных значений выборочного среднего. Он используется для сравнения выборочных средних по совокупности.

Короче говоря, стандартная ошибка статистики — это не что иное, как стандартное отклонение ее выборочного распределения. Он играет большую роль в проверке статистических гипотез и интервальной оценке. Это дает представление о точности и достоверности сметы. Чем меньше стандартная ошибка, тем больше однородность теоретического распределения и наоборот.

  • Формула: Стандартная ошибка для выборочного среднего = σ / √n
    Где, σ — стандартное отклонение совокупности

Ключевые различия между стандартным отклонением и стандартной ошибкой

Приведенные ниже моменты существенны с точки зрения разницы между стандартным отклонением:

  1. Стандартное отклонение — это мера, которая оценивает степень вариации набора наблюдений. Стандартная ошибка измеряет точность оценки, т. Е. Является мерой изменчивости теоретического распределения статистики.
  2. Стандартное отклонение — это описательная статистика, тогда как стандартная ошибка — это выводимая статистика.
  3. Стандартное отклонение измеряет, насколько отдельные значения отличаются от среднего значения. Напротив, насколько близко среднее значение выборки к среднему значению генеральной совокупности.
  4. Стандартное отклонение — это распределение наблюдений относительно нормальной кривой. В отличие от этого, стандартная ошибка — это распределение оценки относительно нормальной кривой.
  5. Стандартное отклонение определяется как квадратный корень из дисперсии. И наоборот, стандартная ошибка описывается как стандартное отклонение, деленное на квадратный корень из размера выборки.
  6. Когда размер выборки увеличивается, это дает более конкретную меру стандартного отклонения. В отличие от стандартной ошибки, когда размер выборки увеличивается, стандартная ошибка имеет тенденцию к уменьшению.

Вывод

В целом стандартное отклонение считается одним из лучших показателей дисперсии, который измеряет отклонение значений от центрального значения. С другой стороны, стандартная ошибка в основном используется для проверки надежности и точности оценки, поэтому чем меньше ошибка, тем выше ее надежность и точность.

Имея
прямую регрессии, необходимо оценить
насколько сильно точки исходных данных
отклоняются от прямой регрессии. Можно
выполнить оценку разброса, аналогичную
стандартному отклонению выборки. Этот
показатель, называемый стандартной
ошибкой оценки, демонстрирует величину
отклонения точек исходных данных от
прямой регрессии в направлении оси Y.
Стандартная ошибка оценки ()
вычисляется по следующей формуле.

Стандартная
ошибка оценки измеряет степень отличия
реальных значений Y от оцененной величины.
Для сравнительно больших выборок следует
ожидать, что около 67% разностей по модулю
не будет превышать

и около 95% модулей разностей будет не
больше 2.

Стандартная
ошибка оценки подобна стандартному
отклонению. Ее можно использовать для
оценки стандартного отклонения
совокупности. Фактически

оценивает стандартное отклонение

слагаемого ошибки

в статистической модели простой линейной
регрессии. Другими словами,

оценивает общее стандартное отклонение

нормального распределения значений Y,
имеющих математические ожидания

для каждого X.

Малая
стандартная ошибка оценки, полученная
при регрессионном анализе, свидетельствует,
что все точки данных находятся очень
близко к прямой регрессии. Если стандартная
ошибка оценки велика, точки данных могут
значительно удаляться от прямой.

2.3 Прогнозирование величины y

Регрессионную
прямую можно использовать для оценки
величины переменной Y
при данных значениях переменной X. Чтобы
получить точечный прогноз, или предсказание
для данного значения X, просто вычисляется
значение найденной функции регрессии
в точке X.

Конечно
реальные значения величины Y,
соответствующие рассматриваемым
значениям величины X, к сожалению, не
лежат в точности на регрессионной
прямой. Фактически они разбросаны
относительно прямой в соответствии с
величиной
.
Более того, выборочная регрессионная
прямая является оценкой регрессионной
прямой генеральной совокупности,
основанной на выборке из определенных
пар данных. Другая случайная выборка
даст иную выборочную прямую регрессии;
это аналогично ситуации, когда различные
выборки из одной и той же генеральной
совокупности дают различные значения
выборочного среднего.

Есть
два источника неопределенности в
точечном прогнозе, использующем уравнение
регрессии.

  1. Неопределенность,
    обусловленная отклонением точек данных
    от выборочной прямой регрессии.

  2. Неопределенность,
    обусловленная отклонением выборочной
    прямой регрессии от регрессионной
    прямой генеральной совокупности.

Интервальный
прогноз значений переменной Y
можно построить так, что при этом будут
учтены оба источника неопределенности.

Стандартная
ошибка прогноза

дает меру вариативности предсказанного
значения Y
около истинной величины Y
для данного значения X.
Стандартная ошибка прогноза равна:

Стандартная
ошибка прогноза зависит от значения X,
для которого прогнозируется величина
Y.

минимально, когда
,
поскольку тогда числитель в третьем
слагаемом под корнем в уравнении будет
0. При прочих неизменных величинах
большему отличию соответствует большее
значение стандартной ошибки прогноза.

Если
статистическая модель простой линейной
регрессии соответствует действительности,
границы интервала прогноза величины Y
равны:

где

— квантиль распределения Стьюдента с
n-2 степенями свободы ().
Если выборка велика (),
этот квантиль можно заменить соответствующим
квантилем нормального распределения.
Например, для большой выборки 95%-ный
интервал прогноза задается следующими
значениями:

Завершим
раздел обзором предположений, положенных
в основу статистической модели линейной
регрессии.

  1. Для
    заданного значения X генеральная
    совокупность значений Y имеет нормальное
    распределение относительно регрессионной
    прямой совокупности. На практике
    приемлемые результаты получаются
    и
    тогда, когда значения Y имеют
    нормальное распределение лишь
    приблизительно.

  2. Разброс
    генеральной совокупности точек данных
    относительно регрессионной прямой
    совокупности остается постоянным всюду
    вдоль этой прямой. Иными словами, при
    возрастании значений X в точках данных
    дисперсия генеральной совокупности
    не увеличивается и не уменьшается.
    Нарушение этого предположения называется
    гетероскедастичностью.

  3. Слагаемые
    ошибок

    независимы между собой. Это предположение
    определяет случайность выборки точек
    Х-Y.
    Если точки данных X-Y
    записывались в течение некоторого
    времени, данное предположение часто
    нарушается. Вместо независимых данных,
    такие последовательные наблюдения
    будут давать серийно коррелированные
    значения.

  4. В
    генеральной совокупности существует
    линейная зависимость между X и Y.
    По аналогии с простой линейной регрессией
    может рассматриваться и нелинейная
    зависимость между X и У. Некоторые такие
    случаи будут обсуждаться ниже.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1. Среднеквадратичная ошибка

(Mean Squared Error,MSE)
Отношение суммы квадратов отклонений наблюдений и истинных значений к количеству наблюдений:

M

S

E

=

1

m

i

=

1

m

(

f

i

y

i

)

2

MSE = frac{1}{m}sum_{i=1}^{m}(f_i-y_i)^2

Это наиболее часто используемая функция потерь в линейной регрессии. Постарайтесь минимизировать функцию потерь во время линейной регрессии. Тогда сравнение между моделями также можно использовать для сравнения.
MSE может оценить степень изменения данных. Чем меньше значение MSE, тем выше точность прогнозной модели для описания экспериментальных данных.

2. Среднеквадратичная ошибка (стандартная ошибка)

(Root Mean Squard Error,RMSE)
Стандартное отклонение — это арифметический квадратный корень из дисперсии.
Стандартная ошибка — это арифметический квадратный корень из среднеквадратичной ошибки.
Стандартное отклонение используется для измерения степени разброса набора чисел, а среднеквадратичная ошибка используется для измерения отклонения между наблюдаемым значением и истинным значением, объектами исследования и исследовательскими целями. По-разному, но процесс расчета похож.

R

M

S

E

=

1

m

i

=

1

m

(

f

i

y

i

)

2

RMSE =sqrt{frac{1}{m}sum_{i=1}^{m}(f_i-y_i)^2}

Его значение состоит в том, что после открытия корневого знака результат ошибки находится на том же уровне, что и данные, что может лучше описать данные. Стандартная ошибка очень чувствительна к большой или малой ошибке в группе измерений, поэтому стандартная ошибка может хорошо отражать точность измерения. По этой причине стандартные ошибки широко используются при инженерных изысканиях.

3. Средняя абсолютная ошибка

(Mean Absolute Error,MAE)

Средняя абсолютная ошибка — это средняя абсолютная ошибка:

M

A

E

=

1

m

i

=

1

m

f

i

y

i

MAE = frac{1}{m}sum_{i=1}^{m}|f_i-y_i|

Средняя абсолютная ошибка может лучше отражать реальную ситуацию с ошибкой предсказанного значения.

4. R-squared

R

2

=

1

i

=

1

m

(

f

i

y

i

)

2

i

=

1

m

(

y

i

y

i

)

2

R^2=1-frac{sum_{i=1}^{m}(f_i-y_i)^2}{sum_{i=1}^{m}(overline{y_i}-y_i)^2}

Числитель выше представляет собой сумму ошибок предсказания модели, которую мы обучили.
Следующий знаменатель представляет собой сумму ошибок предположения. (Обычно среднее значение наблюдений)

Если результат равен 0, это означает, что наша модель похожа на угадывание.
Если результат равен 1. Это означает, что наша модель не содержит ошибок.

R-квадрат находится между 0 и 1. Чем ближе к 1, тем лучше эффект подгонки регрессии. Обычно считается, что степень согласия модели выше 0,8 выше.

Упростите формулу выше
Разделите числитель и знаменатель на m одновременно, тогда числитель станет нашей среднеквадратичной ошибкой MSE, а следующий знаменатель станет дисперсией.

R

2

=

1

1

m

i

=

1

m

(

f

i

y

i

)

2

1

m

i

=

1

m

(

y

i

y

i

)

2

=

1

M

S

E

(

f

,

y

)

V

a

r

(

y

)

R^2=1-frac{frac{1}{m}sum_{i=1}^{m}(f_i-y_i)^2}{frac{1}{m}sum_{i=1}^{m}(overline{y_i}-y_i)^2}=1-frac{MSE(f,y)}{Var(y)}

5. Реализация Python

MSE

y_preditc = reg.predict (x_test) #reg - обученная модель
 mse_test = np.sum ((y_preditc-y_test) ** 2) / len (y_test) # То же, что и математическая формула

RMSE

rmse_test=mse_test ** 0.5

MAE

mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test)

R

2

R^2

1- mean_squared_error(y_test,y_preditc)/ np.var(y_test)

вызов sklearn

from sklearn.metrics import mean_squared_error 
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score#R square

mean_squared_error(y_test,y_predict)
mean_absolute_error(y_test,y_predict)
r2_score(y_test,y_predict)

Стандартное отклонение (SD), измеряет количество изменчивости или дисперсии, из отдельных значений данных, к среднему значению, в то время как стандартная ошибка среднего (SEM) мер, как далеко образец среднее (среднее) данных, вероятно, будет от истинного среднего значения населения. SEM всегда меньше SD.

Ключевые выводы

  • Стандартное отклонение (SD) измеряет разброс набора данных относительно его среднего значения.
  • Стандартная ошибка среднего (SEM) измеряет, насколько вероятно расхождение между средним значением выборки по сравнению со средним значением генеральной совокупности.
  • SEM берет SD и делит его на квадратный корень из размера выборки.

SEM против SD

Стандартное отклонение и стандартная ошибка используются во всех типах статистических исследований, включая исследования в области финансов, медицины, биологии, инженерии, психологии и т. Д. В этих исследованиях стандартное отклонение (SD) и расчетная стандартная ошибка среднего (SEM) ) используются для представления характеристик данных выборки и объяснения результатов статистического анализа. Однако некоторые исследователи иногда путают SD и SEM. Таким исследователям следует помнить, что расчеты SD и SEM включают разные статистические выводы, каждый из которых имеет свое значение. SD – это разброс отдельных значений данных.

Другими словами, SD указывает, насколько точно среднее значение представляет данные выборки. Однако значение SEM включает статистический вывод, основанный на распределении выборки. SEM – это стандартное отклонение теоретического распределения выборочных средних (выборочное распределение).

Расчет стандартного отклонения

Формула SD требует нескольких шагов:

  1. Во-первых, возьмите квадрат разницы между каждой точкой данных и средним значением выборки, найдя сумму этих значений.
  2. Затем разделите эту сумму на размер выборки минус один, который представляет собой дисперсию.
  3. Наконец, извлеките квадратный корень из дисперсии, чтобы получить стандартное отклонение.

Стандартная ошибка среднего

SEM рассчитывается путем деления стандартного отклонения на квадратный корень из размера выборки.

Стандартная ошибка дает точность выборочного среднего путем измерения изменчивости выборочного среднего от образца к образцу. SEM описывает, насколько точное среднее значение выборки является оценкой истинного среднего значения совокупности. По мере увеличения размера выборки данных SEM уменьшается по сравнению с SD; следовательно, по мере увеличения размера выборки среднее значение выборки оценивает истинное среднее значение генеральной совокупности с большей точностью. Напротив, увеличение размера выборки не обязательно делает SD больше или меньше, это просто становится более точной оценкой SD населения.

Стандартная ошибка и стандартное отклонение в финансах

В финансах стандартная ошибка средней дневной доходности актива измеряет точность выборочного среднего как оценки долгосрочной (постоянной) средней дневной доходности актива.

С другой стороны, стандартное отклонение доходности измеряет отклонения индивидуальных доходов от среднего значения. Таким образом, SD является мерой волатильности и может использоваться в качестве меры риска для инвестиций. Активы с более высокими ежедневными движениями цен имеют более высокое SD, чем активы с меньшими ежедневными движениями. Предполагая нормальное распределение, около 68% дневных изменений цен находятся в пределах одного стандартного отклонения от среднего, при этом около 95% дневных изменений цен находятся в пределах двух стандартных значений среднего.


Загрузить PDF


Загрузить PDF

Стандартной ошибкой называется величина, которая характеризует стандартное (среднеквадратическое) отклонение выборочного среднего. Другими словами, эту величину можно использовать для оценки точности выборочного среднего. Множество областей применения стандартной ошибки по умолчанию предполагают нормальное распределение. Если вам нужно рассчитать стандартную ошибку, перейдите к шагу 1.

  1. Изображение с названием Calculate Standard Error Step 1

    1

    Запомните определение среднеквадратического отклонения. Среднеквадратическое отклонение выборки – это мера рассеянности значения. Среднеквадратическое отклонение выборки обычно обозначается буквой s. Математическая формула среднеквадратического отклонения приведена выше.

  2. Изображение с названием Calculate Standard Error Step 2

    2

    Узнайте, что такое истинное среднее значение. Истинное среднее является средним группы чисел, включающим все числа всей группы – другими словами, это среднее всей группы чисел, а не выборки.

  3. Изображение с названием Calculate Standard Error Step 3

    3

    Научитесь рассчитывать среднеарифметическое значение. Среднеаримфетическое означает попросту среднее: сумму значений собранных данных, разделенную на количество значений этих данных.

  4. Изображение с названием Calculate Standard Error Step 4

    4

    Узнайте, что такое выборочное среднее. Когда среднеарифметическое значение основано на серии наблюдений, полученных в результате выборок из статистической совокупности, оно называется “выборочным средним”. Это среднее выборки чисел, которое описывает среднее значение лишь части чисел из всей группы. Его обозначают как:

  5. Изображение с названием Calculate Standard Error Step 5

    5

    Усвойте понятие нормального распределения. Нормальные распределения, которые используются чаще других распределений, являются симметричными, с единичным максимумом в центре – на среднем значении данных. Форма кривой подобна очертаниям колокола, при этом график равномерно опускается по обе стороны от среднего. Пятьдесят процентов распределения лежит слева от среднего, а другие пятьдесят процентов – справа от него. Рассеянность значений нормального распределения описывается стандартным отклонением.

  6. Изображение с названием Calculate Standard Error Step 6

    6

    Запомните основную формулу. Формула для вычисления стандартной ошибки приведена выше.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 7

    1

    Рассчитайте выборочное среднее. Чтобы найти стандартную ошибку, сначала нужно определить среднеквадратическое отклонение (поскольку среднеквадратическое отклонение s входит в формулу для вычисления стандартной ошибки). Начните с нахождения средних значений. Выборочное среднее выражается как среднее арифметическое измерений x1, x2, . . . , xn. Его рассчитывают по формуле, приведенной выше.

    • Допустим, например, что вам нужно рассчитать стандартную ошибку выборочного среднего результатов измерения массы пяти монет, указанных в таблице:
      Вы сможете рассчитать выборочное среднее, подставив значения массы в формулу:
  2. Изображение с названием Calculate Standard Error Step 8

    2

    Вычтите выборочное среднее из каждого измерения и возведите полученное значение в квадрат. Как только вы получите выборочное среднее, вы можете расширить вашу таблицу, вычтя его из каждого измерения и возведя результат в квадрат.

    • Для нашего примера расширенная таблица будет иметь следующий вид:
  3. Изображение с названием Calculate Standard Error Step 9

    3

    Найдите суммарное отклонение ваших измерений от выборочного среднего. Общее отклонение – это сумма возведенных в квадрат разностей от выборочного среднего. Чтобы определить его, сложите ваши новые значения.

    • В нашем примере нужно будет выполнить следующий расчет:
      Это уравнение дает сумму квадратов отклонений измерений от выборочного среднего.
  4. Изображение с названием Calculate Standard Error Step 10

    4

    Рассчитайте среднеквадратическое отклонение ваших измерений от выборочного среднего. Как только вы будете знать суммарное отклонение, вы сможете найти среднее отклонение, разделив ответ на n -1. Обратите внимание, что n равно числу измерений.

    • В нашем примере было сделано 5 измерений, следовательно n – 1 будет равно 4. Расчет нужно вести следующим образом:
  5. Изображение с названием Calculate Standard Error Step 11

    5

    Найдите среднеквадратичное отклонение. Сейчас у вас есть все необходимые значения для того, чтобы воспользоваться формулой для нахождения среднеквадратичного отклонения s.

    • В нашем примере вы будете рассчитывать среднеквадратичное отклонение следующим образом:
      Следовательно, среднеквадратичное отклонение равно 0,0071624.

    Реклама

  1. Изображение с названием Calculate Standard Error Step 12

    1

    Чтобы вычислить стандартную ошибку, воспользуйтесь базовой формулой со среднеквадратическим отклонением.

    • В нашем примере вы сможете рассчитать стандартную ошибку следующим образом:
      Таким образом в нашем примере стандартная ошибка (среднеквадратическое отклонение выборочного среднего) составляет 0,0032031 грамма.

Советы

  • Стандартную ошибку и среднеквадратическое отклонение часто путают. Обратите внимание, что стандартная ошибка описывает среднеквадратическое отклонение выборочного распределения статистических данных, а не распределения отдельных значений
  • В научных журналах понятия стандартной ошибки и среднеквадратического отклонения несколько размыты. Для объединения двух величин используется знак ±.

Реклама

Об этой статье

Эту страницу просматривали 48 427 раз.

Была ли эта статья полезной?

Содержание

  • Расчет ошибки средней арифметической
    • Способ 1: расчет с помощью комбинации функций
    • Способ 2: применение инструмента «Описательная статистика»
  • Вопросы и ответы

Ошибка средней арифметической в Microsoft Excel

Стандартная ошибка или, как часто называют, ошибка средней арифметической, является одним из важных статистических показателей. С помощью данного показателя можно определить неоднородность выборки. Он также довольно важен при прогнозировании. Давайте узнаем, какими способами можно рассчитать величину стандартной ошибки с помощью инструментов Microsoft Excel.

Расчет ошибки средней арифметической

Одним из показателей, которые характеризуют цельность и однородность выборки, является стандартная ошибка. Эта величина представляет собой корень квадратный из дисперсии. Сама дисперсия является средним квадратном от средней арифметической. Средняя арифметическая вычисляется делением суммарной величины объектов выборки на их общее количество.

В Экселе существуют два способа вычисления стандартной ошибки: используя набор функций и при помощи инструментов Пакета анализа. Давайте подробно рассмотрим каждый из этих вариантов.

Способ 1: расчет с помощью комбинации функций

Прежде всего, давайте составим алгоритм действий на конкретном примере по расчету ошибки средней арифметической, используя для этих целей комбинацию функций. Для выполнения задачи нам понадобятся операторы СТАНДОТКЛОН.В, КОРЕНЬ и СЧЁТ.

Для примера нами будет использована выборка из двенадцати чисел, представленных в таблице.

Выборка в Microsoft Excel

  1. Выделяем ячейку, в которой будет выводиться итоговое значение стандартной ошибки, и клацаем по иконке «Вставить функцию».
  2. Переход в Мастер функций в Microsoft Excel

  3. Открывается Мастер функций. Производим перемещение в блок «Статистические». В представленном перечне наименований выбираем название «СТАНДОТКЛОН.В».
  4. Переход в окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  5. Запускается окно аргументов вышеуказанного оператора. СТАНДОТКЛОН.В предназначен для оценивания стандартного отклонения при выборке. Данный оператор имеет следующий синтаксис:

    =СТАНДОТКЛОН.В(число1;число2;…)

    «Число1» и последующие аргументы являются числовыми значениями или ссылками на ячейки и диапазоны листа, в которых они расположены. Всего может насчитываться до 255 аргументов этого типа. Обязательным является только первый аргумент.

    Итак, устанавливаем курсор в поле «Число1». Далее, обязательно произведя зажим левой кнопки мыши, выделяем курсором весь диапазон выборки на листе. Координаты данного массива тут же отображаются в поле окна. После этого клацаем по кнопке «OK».

  6. Окно аргументов функции СТАНДОТКЛОН.В в Microsoft Excel

  7. В ячейку на листе выводится результат расчета оператора СТАНДОТКЛОН.В. Но это ещё не ошибка средней арифметической. Для того, чтобы получить искомое значение, нужно стандартное отклонение разделить на квадратный корень от количества элементов выборки. Для того, чтобы продолжить вычисления, выделяем ячейку, содержащую функцию СТАНДОТКЛОН.В. После этого устанавливаем курсор в строку формул и дописываем после уже существующего выражения знак деления (/). Вслед за этим клацаем по пиктограмме перевернутого вниз углом треугольника, которая располагается слева от строки формул. Открывается список недавно использованных функций. Если вы в нем найдете наименование оператора «КОРЕНЬ», то переходите по данному наименованию. В обратном случае жмите по пункту «Другие функции…».
  8. Переход к дальнейшему продолжению написания формулы стандартной ошибки в Microsoft Excel

  9. Снова происходит запуск Мастера функций. На этот раз нам следует посетить категорию «Математические». В представленном перечне выделяем название «КОРЕНЬ» и жмем на кнопку «OK».
  10. Переход в окно аргументов функции КОРЕНЬ в Microsoft Excel

  11. Открывается окно аргументов функции КОРЕНЬ. Единственной задачей данного оператора является вычисление квадратного корня из заданного числа. Его синтаксис предельно простой:

    =КОРЕНЬ(число)

    Lumpics.ru

    Как видим, функция имеет всего один аргумент «Число». Он может быть представлен числовым значением, ссылкой на ячейку, в которой оно содержится или другой функцией, вычисляющей это число. Последний вариант как раз и будет представлен в нашем примере.

    Устанавливаем курсор в поле «Число» и кликаем по знакомому нам треугольнику, который вызывает список последних использованных функций. Ищем в нем наименование «СЧЁТ». Если находим, то кликаем по нему. В обратном случае, опять же, переходим по наименованию «Другие функции…».

  12. Окно аргументов функции КОРЕНЬ в Microsoft Excel

  13. В раскрывшемся окне Мастера функций производим перемещение в группу «Статистические». Там выделяем наименование «СЧЁТ» и выполняем клик по кнопке «OK».
  14. Переход в окно аргументов функции СЧЁТ в Microsoft Excel

  15. Запускается окно аргументов функции СЧЁТ. Указанный оператор предназначен для вычисления количества ячеек, которые заполнены числовыми значениями. В нашем случае он будет подсчитывать количество элементов выборки и сообщать результат «материнскому» оператору КОРЕНЬ. Синтаксис функции следующий:

    =СЧЁТ(значение1;значение2;…)

    В качестве аргументов «Значение», которых может насчитываться до 255 штук, выступают ссылки на диапазоны ячеек. Ставим курсор в поле «Значение1», зажимаем левую кнопку мыши и выделяем весь диапазон выборки. После того, как его координаты отобразились в поле, жмем на кнопку «OK».

  16. Окно аргументов функции СЧЁТ в Microsoft Excel

  17. После выполнения последнего действия будет не только рассчитано количество ячеек заполненных числами, но и вычислена ошибка средней арифметической, так как это был последний штрих в работе над данной формулой. Величина стандартной ошибки выведена в ту ячейку, где размещена сложная формула, общий вид которой в нашем случае следующий:

    =СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13))

    Результат вычисления ошибки средней арифметической составил 0,505793. Запомним это число и сравним с тем, которое получим при решении поставленной задачи следующим способом.

Результат вычисления стандартной ошибки в сложной формуле в Microsoft Excel

Но дело в том, что для малых выборок (до 30 единиц) для большей точности лучше применять немного измененную формулу. В ней величина стандартного отклонения делится не на квадратный корень от количества элементов выборки, а на квадратный корень от количества элементов выборки минус один. Таким образом, с учетом нюансов малой выборки наша формула приобретет следующий вид:

=СТАНДОТКЛОН.В(B2:B13)/КОРЕНЬ(СЧЁТ(B2:B13)-1)

Результат вычисления стандартной ошибки для малой выборки в Microsoft Excel

Урок: Статистические функции в Экселе

Способ 2: применение инструмента «Описательная статистика»

Вторым вариантом, с помощью которого можно вычислить стандартную ошибку в Экселе, является применение инструмента «Описательная статистика», входящего в набор инструментов «Анализ данных» («Пакет анализа»). «Описательная статистика» проводит комплексный анализ выборки по различным критериям. Одним из них как раз и является нахождение ошибки средней арифметической.

Но чтобы воспользоваться данной возможностью, нужно сразу активировать «Пакет анализа», так как по умолчанию в Экселе он отключен.

  1. После того, как открыт документ с выборкой, переходим во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Далее, воспользовавшись левым вертикальным меню, перемещаемся через его пункт в раздел «Параметры».
  4. Перемещение в раздел Параметры в Microsoft Excel

  5. Запускается окно параметров Эксель. В левой части данного окна размещено меню, через которое перемещаемся в подраздел «Надстройки».
  6. Переход в подраздел надстройки окна параметров в Microsoft Excel

  7. В самой нижней части появившегося окна расположено поле «Управление». Выставляем в нем параметр «Надстройки Excel» и жмем на кнопку «Перейти…» справа от него.
  8. Переход в окно надстроек в Microsoft Excel

  9. Запускается окно надстроек с перечнем доступных скриптов. Отмечаем галочкой наименование «Пакет анализа» и щелкаем по кнопке «OK» в правой части окошка.
  10. Включение пакета анализа в окне надстроек в Microsoft Excel

  11. После выполнения последнего действия на ленте появится новая группа инструментов, которая имеет наименование «Анализ». Чтобы перейти к ней, щелкаем по названию вкладки «Данные».
  12. Переход во вкладку Данные в Microsoft Excel

  13. После перехода жмем на кнопку «Анализ данных» в блоке инструментов «Анализ», который расположен в самом конце ленты.
  14. Переход в Анализ данных в Microsoft Excel

  15. Запускается окошко выбора инструмента анализа. Выделяем наименование «Описательная статистика» и жмем на кнопку «OK» справа.
  16. Переход в описательную статистику в Microsoft Excel

  17. Запускается окно настроек инструмента комплексного статистического анализа «Описательная статистика».

    В поле «Входной интервал» необходимо указать диапазон ячеек таблицы, в которых находится анализируемая выборка. Вручную это делать неудобно, хотя и можно, поэтому ставим курсор в указанное поле и при зажатой левой кнопке мыши выделяем соответствующий массив данных на листе. Его координаты тут же отобразятся в поле окна.

    В блоке «Группирование» оставляем настройки по умолчанию. То есть, переключатель должен стоять около пункта «По столбцам». Если это не так, то его следует переставить.

    Галочку «Метки в первой строке» можно не устанавливать. Для решения нашего вопроса это не важно.

    Далее переходим к блоку настроек «Параметры вывода». Здесь следует указать, куда именно будет выводиться результат расчета инструмента «Описательная статистика»:

    • На новый лист;
    • В новую книгу (другой файл);
    • В указанный диапазон текущего листа.

    Давайте выберем последний из этих вариантов. Для этого переставляем переключатель в позицию «Выходной интервал» и устанавливаем курсор в поле напротив данного параметра. После этого клацаем на листе по ячейке, которая станет верхним левым элементом массива вывода данных. Её координаты должны отобразиться в поле, в котором мы до этого устанавливали курсор.

    Далее следует блок настроек определяющий, какие именно данные нужно вводить:

    • Итоговая статистика;
    • К-ый наибольший;
    • К-ый наименьший;
    • Уровень надежности.

    Для определения стандартной ошибки обязательно нужно установить галочку около параметра «Итоговая статистика». Напротив остальных пунктов выставляем галочки на свое усмотрение. На решение нашей основной задачи это никак не повлияет.

    После того, как все настройки в окне «Описательная статистика» установлены, щелкаем по кнопке «OK» в его правой части.

  18. Окно описаительная статистика в Microsoft Excel

  19. После этого инструмент «Описательная статистика» выводит результаты обработки выборки на текущий лист. Как видим, это довольно много разноплановых статистических показателей, но среди них есть и нужный нам – «Стандартная ошибка». Он равен числу 0,505793. Это в точности тот же результат, который мы достигли путем применения сложной формулы при описании предыдущего способа.

Результат расчета стандартной ошибки путем применения инструмента Описательная статистика в Microsoft Excel

Урок: Описательная статистика в Экселе

Как видим, в Экселе можно произвести расчет стандартной ошибки двумя способами: применив набор функций и воспользовавшись инструментом пакета анализа «Описательная статистика». Итоговый результат будет абсолютно одинаковый. Поэтому выбор метода зависит от удобства пользователя и поставленной конкретной задачи. Например, если ошибка средней арифметической является только одним из многих статистических показателей выборки, которые нужно рассчитать, то удобнее воспользоваться инструментом «Описательная статистика». Но если вам нужно вычислить исключительно этот показатель, то во избежание нагромождения лишних данных лучше прибегнуть к сложной формуле. В этом случае результат расчета уместится в одной ячейке листа.

Среднее арифметическое, как известно, используется для получения обобщающей характеристики некоторого набора данных. Если данные более-менее однородны и в них нет аномальных наблюдений (выбросов), то среднее хорошо обобщает данные, сведя к минимуму влияние случайных факторов (они взаимопогашаются при сложении).

Когда анализируемые данные представляют собой выборку (которая состоит из случайных значений), то среднее арифметическое часто (но не всегда) выступает в роли приближенной оценки математического ожидания. Почему приближенной? Потому что среднее арифметическое – это величина, которая зависит от набора случайных чисел, и, следовательно, сама является случайной величиной. При повторных экспериментах (даже в одних и тех же условиях) средние будут отличаться друг от друга.

Для того, чтобы на основе статистического анализа данных делать корректные выводы, необходимо оценить возможный разброс полученного результата. Для этого рассчитываются различные показатели вариации. Но то исходные данные. И как мы только что установили, среднее арифметическое также обладает разбросом, который необходимо оценить и учитывать в дальнейшем (в выводах, в выборе метода анализа и т.д.).

Интуитивно понятно, что разброс средней должен быть как-то связан с разбросом исходных данных. Основной характеристикой разброса средней выступает та же дисперсия.

Дисперсия выборочных данных – это средний квадрат отклонения от средней, и рассчитать ее по исходным данным не составляет труда, например, в Excel предусмотрены специальные функции. Однако, как же рассчитать дисперсию средней, если в распоряжении есть только одна выборка и одно среднее арифметическое?

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

формула средней арифметической

где xi – значения переменной,
n – количество значений.

Теперь учтем два свойства дисперсии, согласно которым, 1) — постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат и 2) — дисперсия суммы независимых случайных величин равняется сумме соответствующих дисперсий. Предполагается, что каждое случайное значение xi обладает одинаковым разбросом, поэтому несложно вывести формулу дисперсии средней арифметической:

Формула дисперсии средней арифметической

Используя более привычные обозначения, формулу записывают как:

Дисперсия средней арифметической

где σ2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Дисперсия средней арифметической по выборке

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Стандартная ошибка средней

Формула стандартной ошибки средней при использовании выборочной дисперсии

Стандартная ошибка средней по выборке

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Стандартная ошибка выборочной средней

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Зависимость стандартной ошибки средней от объем выборки

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Распределение исходных данных и средней

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Поделиться в социальных сетях:


Download Article


Download Article

After collecting data, oftentimes the first thing you need to do is analyze it. This usually entails finding the mean, the standard deviation, and the standard error of the data. This article will show you how it’s done.

Cheat Sheets

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 1

    1

    Obtain a set of numbers you wish to analyze. This information is referred to as a sample.

    • For example, a test was given to a class of 5 students, and the test results are 12, 55, 74, 79 and 90.
  2. Advertisement

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 2

    1

    Calculate the mean. Add up all the numbers and divide by the population size:[1]

    • Mean (μ) = ΣX/N, where Σ is the summation (addition) sign, xi is each individual number, and N is the population size.
    • In the case above, the mean μ is simply (12+55+74+79+90)/5 = 62.
  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 3

    1

    Calculate the standard deviation. This represents the spread of the population.
    Standard deviation = σ = sq rt [(Σ((X-μ)^2))/(N)].[2]

    • For the example given, the standard deviation is sqrt[((12-62)^2 + (55-62)^2 + (74-62)^2 + (79-62)^2 + (90-62)^2)/(5)] = 27.4. (Note that if this was the sample standard deviation, you would divide by n-1, the sample size minus 1.)
  2. Advertisement

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 4

    1

    Calculate the standard error (of the mean). This represents how well the sample mean approximates the population mean. The larger the sample, the smaller the standard error, and the closer the sample mean approximates the population mean. Do this by dividing the standard deviation by the square root of N, the sample size.[3]

    Standard error = σ/sqrt(n)[4]

    • So for the example above, if this were a sampling of 5 students from a class of 50 and the 50 students had a standard deviation of 17 (σ = 21), the standard error = 17/sqrt(5) = 7.6.

Add New Question

  • Question

    How do you find the mean given number of observations?

    Community Answer

    To find the mean, add all the numbers together and divide by how many numbers there are. e.g to find the mean of 1,7,8,4,2: 1+7+8+4+2 = 22/5 = 4.4.

  • Question

    The standard error is calculated as 0.2 and the standard deviation of a sample is 5kg. Can it be said to be smaller or larger than the standard deviation?

    Community Answer

    The standard error (SE) must be smaller than the standard deviation (SD), because the SE is calculating by dividing the SD by something — i.e. making it smaller.

  • Question

    How can I find out the standard deviation of 50 samples?

    Community Answer

    The results of all your figures (number plus number plus number etc.) divided by quantity of samples 50 =SD.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • Calculations of the mean, standard deviation, and standard error are most useful for analysis of normally distributed data. One standard deviation about the central tendency covers approximately 68 percent of the data, 2 standard deviation 95 percent of the data, and 3 standard deviation 99.7 percent of the data. The standard error gets smaller (narrower spread) as the sample size increases.

Thanks for submitting a tip for review!

Advertisement

  • Check your math carefully. It is very easy to make mistakes or enter numbers incorrectly.

Advertisement

References

About This Article

Article SummaryX

The mean is simply the average of a set of numbers. You can work it out by adding up all the numbers and dividing the total by the amount of numbers. For example, if you wanted to find the average test score of 3 students who scored 74, 79, and 90, you’d add the 3 numbers together to get 243, then divide it by 3 to get 81. The standard error represents how well the sample mean approximates the population mean. All you need to do is divide the standard deviation by the square root of the sample size. For instance, if you were sampling 5 students from a class of 50 and the 50 students had a standard deviation of 17, you’d divide 17 by the square root of 5 to get 7.6. For more tips, including how to calculate the standard deviation, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 996,353 times.

Did this article help you?


Download Article


Download Article

After collecting data, oftentimes the first thing you need to do is analyze it. This usually entails finding the mean, the standard deviation, and the standard error of the data. This article will show you how it’s done.

Cheat Sheets

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 1

    1

    Obtain a set of numbers you wish to analyze. This information is referred to as a sample.

    • For example, a test was given to a class of 5 students, and the test results are 12, 55, 74, 79 and 90.
  2. Advertisement

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 2

    1

    Calculate the mean. Add up all the numbers and divide by the population size:[1]

    • Mean (μ) = ΣX/N, where Σ is the summation (addition) sign, xi is each individual number, and N is the population size.
    • In the case above, the mean μ is simply (12+55+74+79+90)/5 = 62.
  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 3

    1

    Calculate the standard deviation. This represents the spread of the population.
    Standard deviation = σ = sq rt [(Σ((X-μ)^2))/(N)].[2]

    • For the example given, the standard deviation is sqrt[((12-62)^2 + (55-62)^2 + (74-62)^2 + (79-62)^2 + (90-62)^2)/(5)] = 27.4. (Note that if this was the sample standard deviation, you would divide by n-1, the sample size minus 1.)
  2. Advertisement

  1. Image titled Calculate Mean, Standard Deviation, and Standard Error Step 4

    1

    Calculate the standard error (of the mean). This represents how well the sample mean approximates the population mean. The larger the sample, the smaller the standard error, and the closer the sample mean approximates the population mean. Do this by dividing the standard deviation by the square root of N, the sample size.[3]

    Standard error = σ/sqrt(n)[4]

    • So for the example above, if this were a sampling of 5 students from a class of 50 and the 50 students had a standard deviation of 17 (σ = 21), the standard error = 17/sqrt(5) = 7.6.

Add New Question

  • Question

    How do you find the mean given number of observations?

    Community Answer

    To find the mean, add all the numbers together and divide by how many numbers there are. e.g to find the mean of 1,7,8,4,2: 1+7+8+4+2 = 22/5 = 4.4.

  • Question

    The standard error is calculated as 0.2 and the standard deviation of a sample is 5kg. Can it be said to be smaller or larger than the standard deviation?

    Community Answer

    The standard error (SE) must be smaller than the standard deviation (SD), because the SE is calculating by dividing the SD by something — i.e. making it smaller.

  • Question

    How can I find out the standard deviation of 50 samples?

    Community Answer

    The results of all your figures (number plus number plus number etc.) divided by quantity of samples 50 =SD.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • Calculations of the mean, standard deviation, and standard error are most useful for analysis of normally distributed data. One standard deviation about the central tendency covers approximately 68 percent of the data, 2 standard deviation 95 percent of the data, and 3 standard deviation 99.7 percent of the data. The standard error gets smaller (narrower spread) as the sample size increases.

Thanks for submitting a tip for review!

Advertisement

  • Check your math carefully. It is very easy to make mistakes or enter numbers incorrectly.

Advertisement

References

About This Article

Article SummaryX

The mean is simply the average of a set of numbers. You can work it out by adding up all the numbers and dividing the total by the amount of numbers. For example, if you wanted to find the average test score of 3 students who scored 74, 79, and 90, you’d add the 3 numbers together to get 243, then divide it by 3 to get 81. The standard error represents how well the sample mean approximates the population mean. All you need to do is divide the standard deviation by the square root of the sample size. For instance, if you were sampling 5 students from a class of 50 and the 50 students had a standard deviation of 17, you’d divide 17 by the square root of 5 to get 7.6. For more tips, including how to calculate the standard deviation, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 996,353 times.

Did this article help you?

Стандартная ошибка появляется при прогнозировании каких-либо данных или арифметических вычислениях, поэтому важно научиться находить этот параметр. В этой публикации разбираем, как найти и исправить стандартную ошибку путем использования инструментов Excel.

Расчет средней арифметической ошибки

В Microsoft Excel цельность и однородность выборки определяется при помощи стандартной ошибки. Стандартная ошибка — это квадратный корень из дисперсии. В приложении предусмотрено два варианта поиска стандартной ошибки: при помощи пакетного анализа и расширенных функций программы.
Чтобы найти значение средней арифметической, необходимо выполнить деление суммарной величины выборки на ее количество в электронной книге.

Расчет стандартной ошибки при помощи встроенных функций

Для того, чтобы правильно вычислять, необходимо изучить пошаговую инструкцию. В этом способе подбор результатов будет осуществляться с помощью комбинированных манипуляций.

  1. Для расчетов будем использовать таблицу с выборкой чисел. Кликаем на любой пустой ячейке на листе, где будет отображаться результат. Затем нажимаем кнопку «Вставить функцию.

№ 14.png

  1. Далее перед вами открывается диалоговое окно, в котором необходимо использовать «СТАНДОТКЛ.В», для этого в поле «Категория» необходимо выбрать «Полный алфавитный перечень». Затем нажмите кнопку «ОК».

№ 15.png

  1. В окне «Аргументы функции» кликаем в первом поле «Число 1», затем выполняем выделение мышью диапазона ячеек со значениями таблицы и нажимаем кнопку «ОК».

№ 16.png

  1. Далее активируем ячейку с нашими значениями, переходим в строку формулы и ставим после значений наклонную линию. Переходим в поле наименования, кликаем на указывающий вниз флажок, где из списка выбираем «Другие функции».

№ 17.png

  1. Снова активируется окно с перечнем функций, в котором необходимо выбрать категорию «Математические», затем функцию «Корень». Далее нажмите кнопку «ОК».

№ 18.png

  1. Далее открывается окно, в котором необходимо заполнить поле с числом. Для этого переходим в поле «Имя», где спускаемся к пункту «Счет». Если его нет, ищите в дополнительных функциях.

№ 19.png

После выполнения этих шагов, стандартная ошибка высчитывается автоматически, пользователю остается только сверить их и проверить значение на некорректное отображение.

Важно!

Для малых и стандартных выборок необходимо использовать разные формулы. В первом случае (если находится до 30 значений), ее необходимо видоизменить.

Решение задачи с помощью опции «Описательная статистика»

Благодаря опции «Описательная статистика» удается выполнить вычисление по различным критериям. По этим правилам удается найти среднюю арифметическую ошибку. Для использования данного метода предварительно нужно запустить «Пакет анализа».

  1. Переходим во вкладку «Файл», где перемещаемся в пункт «Параметры». Далее нажимаем на запись «Надстройки».

№ 20.png

  1. Открывается окошко, в нем в графе «Управление» должно быть прописано «Надстройки Excel», затем рядом нажимаем кнопку «Параметры».

№ 21.png

  1. В появившемся окне находим «Пакет анализа» и нажимаем кнопку «ОК».

№ 22.png

  1. Далее выбираем любую свободную ячейку, переходим во вкладку «Данные» и нажимаем «Анализ данных» в блоке «Анализ».

№ 23.png

  1. Происходит запуск вспомогательного окошка, в котором необходимо выбрать из всех инструментов «Описательную статистику» и нажать кнопку «ОК».

№ 24.png

  1. Открывается новый мастер значений. Здесь нужно вводить данные предельно внимательно. В поле «Входной интервал» вносим адрес диапазона ячеек с выборкой. Затем указываем параметр «Группирование» «По столбцам». Затем выбираем место для «выходного интервала», его должно быть столько же, сколько и «входного». Ставим галочку напротив «Итоговая статистика» и нажимаем кнопку «ОК».

№ 25.png

В результате вычислений вы получаете небольшую таблицу, в которой указаны все данные с определенной стандартной ошибкой.

Чтобы
судить о том, насколько точно проведенные
измерения отражают состав генеральной
совокупности, необходимо вычислить
стандартную ошибку средней арифметической
выборочной совокупности.

Стандартная
ошибка средней арифметической
характеризует степень отклонения
выборочной средней арифметической от
средней арифметической генеральной
совокупности.

Стандартная
ошибка средней арифметической вычисляется
по формуле:

,

где 
– стандартное отклонение результатов
измерений, n
– объем выборки.

Зачастую
мы имеем дело с одной случайной выборкой
и с одной полученной при ее обработке
выборочной средней. Задача заключается
в суждении о величине неизвестной
генеральной средней по полученной
неточной величине случайной выборочной
средней.

Вычислим
среднюю ошибку найденного выборочного
среднего значения роста:

195
см; σ = 8,8 см;
см.

2,8 см
составляют не максимальную, а среднюю
возможную ошибку среднего. Отдельные
выборочные средние могут отклоняться
от генеральной как больше, так и меньше,
чем на 2,8 см.

Каковы
же пределы возможных ошибок случайной
выборки, какова ее максимальная ошибка?
Величина максимальной ошибки зависит
от величины средней ошибки и вычисляется
по формуле

.

При
объеме выборки n
= 10:

.

Все
случайные выборочные средние, которые
могут быть получены в подобных опытах
(в том числе и фактически полученная
выборочная средняя
= 195 см), при своем варьировании около
неизвестного генерального среднего в
подавляющем количестве группируются
около него так, что лишь ничтожный
процент их отклоняется от генеральной
средней более, чем на величину максимальной
ошибки.

Другими
словами, генеральная средняя определяется
как

.

Эти пределы
колебаний значительно сужаются, если
средняя ошибка уменьшается благодаря
увеличению численности выборки.

Искомая
генеральная средняя лежит между
и.
Таким образом, при высокой точности
выполнения эксперимента и достаточно
большом числе измерений можно определить
среднюю арифметическую бесконечно
большого числа экспериментов.

До сих
пор мы определяли максимальную ошибку
выборочной средней, исходя из того, что
все остальные показатели известны. Если
же мы хотим достичь определенной
точности, определенного приближения к
генеральной средней, в этом случае
встает вопрос о численности выборки (о
том, сколько измерений, опытов необходимо
провести).

Допустим, что
максимальная ошибка должна быть равна
5 см. Сколько человек надо обследовать
(измерить) в нашем случае?

.

Следовательно,
мы должны провести измерения роста у
36 баскетболистов высокого класса.

10. Достоверность различий

Следующим
важным вопросом практически для каждого
экспериментатора является умение
доказать достоверность различий между
двумя рядами признаков.

Проверку
достоверности различия двух рядов
измерений производят путем вычисления
критерия достоверности различия – t:

,

где
– средняя одной выборки;– средняя другой выборки;– средняя ошибка первой выборки;– второй выборки. Если t < 2, то различие
между двумя выборками считается
недостоверным, если t
2, то различие между двумя выборками
достоверно на 95%.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Стандартная ошибка среднего — это способ измерить, насколько разбросаны значения в наборе данных. Он рассчитывается как:

Стандартная ошибка = с / √n

куда:

  • s : стандартное отклонение выборки
  • n : размер выборки

Вы можете рассчитать стандартную ошибку среднего для любого набора данных в Excel, используя следующую формулу:

= СТАНДОТКЛОН (диапазон значений) / КОРЕНЬ ( СЧЁТ (диапазон значений))

В следующем примере показано, как использовать эту формулу.

Пример: Стандартная ошибка в Excel

Предположим, у нас есть следующий набор данных:

На следующем снимке экрана показано, как рассчитать стандартную ошибку среднего значения для этого набора данных:

Стандартная ошибка среднего в Excel

Стандартная ошибка оказывается равной 2,0014 .

Обратите внимание, что функция =СТАНДОТКЛОН() вычисляет выборочное среднее, что эквивалентно функции =СТАНДОТКЛОН.С() в Excel.

Таким образом, мы могли бы использовать следующую формулу для получения тех же результатов:

Стандартная ошибка среднего значения в Excel с использованием выборочного стандартного отклонения

И снова стандартная ошибка оказывается равной 2,0014 .

Как интерпретировать стандартную ошибку среднего

Стандартная ошибка среднего — это просто мера того, насколько разбросаны значения вокруг среднего. При интерпретации стандартной ошибки среднего следует помнить о двух вещах:

1. Чем больше стандартная ошибка среднего, тем более разбросаны значения вокруг среднего в наборе данных.

Чтобы проиллюстрировать это, рассмотрим, изменим ли мы последнее значение в предыдущем наборе данных на гораздо большее число:

Обратите внимание на скачок стандартной ошибки с 2,0014 до 6,9783.Это указывает на то, что значения в этом наборе данных более разбросаны вокруг среднего значения по сравнению с предыдущим набором данных.

2. По мере увеличения размера выборки стандартная ошибка среднего имеет тенденцию к уменьшению.

Чтобы проиллюстрировать это, рассмотрим стандартную ошибку среднего для следующих двух наборов данных:

Второй набор данных — это просто первый набор данных, повторенный дважды. Таким образом, два набора данных имеют одинаковое среднее значение, но второй набор данных имеет больший размер выборки, поэтому стандартная ошибка меньше.

From Wikipedia, the free encyclopedia

For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

The standard error (SE)[1] of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution[2] or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM).[1]

The sampling distribution of a mean is generated by repeated sampling from the same population and recording of the sample means obtained. This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

Therefore, the relationship between the standard error of the mean and the standard deviation is such that, for a given sample size, the standard error of the mean equals the standard deviation divided by the square root of the sample size.[1] In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean.

In regression analysis, the term «standard error» refers either to the square root of the reduced chi-squared statistic or the standard error for a particular regression coefficient (as used in, say, confidence intervals).

Standard error of the sample mean[edit]

Exact value[edit]

Suppose a statistically independent sample of n observations {displaystyle x_{1},x_{2},ldots ,x_{n}} is taken from a statistical population with a standard deviation of sigma . The mean value calculated from the sample, {bar {x}}, will have an associated standard error on the mean, {displaystyle {sigma }_{bar {x}}}, given by:[1]

{displaystyle {sigma }_{bar {x}} ={frac {sigma }{sqrt {n}}}}.

Practically this tells us that when trying to estimate the value of a population mean, due to the factor 1/{sqrt {n}}, reducing the error on the estimate by a factor of two requires acquiring four times as many observations in the sample; reducing it by a factor of ten requires a hundred times as many observations.

Estimate[edit]

The standard deviation sigma of the population being sampled is seldom known. Therefore, the standard error of the mean is usually estimated by replacing sigma with the sample standard deviation sigma _{x} instead:

{displaystyle {sigma }_{bar {x}} approx {frac {sigma _{x}}{sqrt {n}}}}.

As this is only an estimator for the true «standard error», it is common to see other notations here such as:

{displaystyle {widehat {sigma }}_{bar {x}}approx {frac {sigma _{x}}{sqrt {n}}}} or alternately {displaystyle {s}_{bar {x}} approx {frac {s}{sqrt {n}}}}.

A common source of confusion occurs when failing to distinguish clearly between:

Accuracy of the estimator[edit]

When the sample size is small, using the standard deviation of the sample instead of the true standard deviation of the population will tend to systematically underestimate the population standard deviation, and therefore also the standard error. With n = 2, the underestimate is about 25%, but for n = 6, the underestimate is only 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect.[3] Sokal and Rohlf (1981) give an equation of the correction factor for small samples of n < 20.[4] See unbiased estimation of standard deviation for further discussion.

Derivation[edit]

The standard error on the mean may be derived from the variance of a sum of independent random variables,[5] given the definition of variance and some simple properties thereof. If {displaystyle x_{1},x_{2},ldots ,x_{n}} are n independent samples from a population with mean {bar {x}} and standard deviation sigma , then we can define the total

{displaystyle T=(x_{1}+x_{2}+cdots +x_{n})}

which due to the Bienaymé formula, will have variance

{displaystyle operatorname {Var} (T)approx {big (}operatorname {Var} (x_{1})+operatorname {Var} (x_{2})+cdots +operatorname {Var} (x_{n}){big )}=nsigma ^{2}.}

where we’ve approximated the standard deviations, i.e., the uncertainties, of the measurements themselves with the best value for the standard deviation of the population. The mean of these measurements {bar {x}} is simply given by

{displaystyle {bar {x}}=T/n}.

The variance of the mean is then

{displaystyle operatorname {Var} ({bar {x}})=operatorname {Var} left({frac {T}{n}}right)={frac {1}{n^{2}}}operatorname {Var} (T)={frac {1}{n^{2}}}nsigma ^{2}={frac {sigma ^{2}}{n}}.}

The standard error is, by definition, the standard deviation of {bar {x}} which is simply the square root of the variance:

{displaystyle sigma _{bar {x}}={sqrt {frac {sigma ^{2}}{n}}}={frac {sigma }{sqrt {n}}}}.

For correlated random variables the sample variance needs to be computed according to the Markov chain central limit theorem.

Independent and identically distributed random variables with random sample size[edit]

There are cases when a sample is taken without knowing, in advance, how many observations will be acceptable according to some criterion. In such cases, the sample size N is a random variable whose variation adds to the variation of X such that,

{displaystyle operatorname {Var} (T)=operatorname {E} (N)operatorname {Var} (X)+operatorname {Var} (N){big (}operatorname {E} (X){big )}^{2}}[6]

If N has a Poisson distribution, then {displaystyle operatorname {E} (N)=operatorname {Var} (N)} with estimator {displaystyle N=n}. Hence the estimator of {displaystyle operatorname {Var} (T)} becomes {displaystyle nS_{X}^{2}+n{bar {X}}^{2}}, leading the following formula for standard error:

{displaystyle operatorname {Standard~Error} ({bar {X}})={sqrt {frac {S_{X}^{2}+{bar {X}}^{2}}{n}}}}

(since the standard deviation is the square root of the variance)

Student approximation when σ value is unknown[edit]

In many practical applications, the true value of σ is unknown. As a result, we need to use a distribution that takes into account that spread of possible σ’s.
When the true underlying distribution is known to be Gaussian, although with unknown σ, then the resulting estimated distribution follows the Student t-distribution. The standard error is the standard deviation of the Student t-distribution. T-distributions are slightly different from Gaussian, and vary depending on the size of the sample. Small samples are somewhat more likely to underestimate the population standard deviation and have a mean that differs from the true population mean, and the Student t-distribution accounts for the probability of these events with somewhat heavier tails compared to a Gaussian. To estimate the standard error of a Student t-distribution it is sufficient to use the sample standard deviation «s» instead of σ, and we could use this value to calculate confidence intervals.

Note: The Student’s probability distribution is approximated well by the Gaussian distribution when the sample size is over 100. For such samples one can use the latter distribution, which is much simpler.

Assumptions and usage[edit]

An example of how {displaystyle operatorname {SE} } is used is to make confidence intervals of the unknown population mean. If the sampling distribution is normally distributed, the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean. The following expressions can be used to calculate the upper and lower 95% confidence limits, where {bar {x}} is equal to the sample mean, {displaystyle operatorname {SE} } is equal to the standard error for the sample mean, and 1.96 is the approximate value of the 97.5 percentile point of the normal distribution:

Upper 95% limit {displaystyle ={bar {x}}+(operatorname {SE} times 1.96),} and
Lower 95% limit {displaystyle ={bar {x}}-(operatorname {SE} times 1.96).}

In particular, the standard error of a sample statistic (such as sample mean) is the actual or estimated standard deviation of the sample mean in the process by which it was generated. In other words, it is the actual or estimated standard deviation of the sampling distribution of the sample statistic. The notation for standard error can be any one of SE, SEM (for standard error of measurement or mean), or SE.

Standard errors provide simple measures of uncertainty in a value and are often used because:

  • in many cases, if the standard error of several individual quantities is known then the standard error of some function of the quantities can be easily calculated;
  • when the probability distribution of the value is known, it can be used to calculate an exact confidence interval;
  • when the probability distribution is unknown, Chebyshev’s or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and
  • as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

Standard error of mean versus standard deviation[edit]

In scientific and technical literature, experimental data are often summarized either using the mean and standard deviation of the sample data or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the standard error of the mean is descriptive of the random sampling process. The standard deviation of the sample data is a description of the variation in measurements, while the standard error of the mean is a probabilistic statement about how the sample size will provide a better bound on estimates of the population mean, in light of the central limit theorem.[7]

Put simply, the standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean, whereas the standard deviation of the sample is the degree to which individuals within the sample differ from the sample mean.[8] If the population standard deviation is finite, the standard error of the mean of the sample will tend to zero with increasing sample size, because the estimate of the population mean will improve, while the standard deviation of the sample will tend to approximate the population standard deviation as the sample size increases.

Extensions[edit]

Finite population correction (FPC)[edit]

The formula given above for the standard error assumes that the population is infinite. Nonetheless, it is often used for finite populations when people are interested in measuring the process that created the existing finite population (this is called an analytic study). Though the above formula is not exactly correct when the population is finite, the difference between the finite- and infinite-population versions will be small when sampling fraction is small (e.g. a small proportion of a finite population is studied). In this case people often do not correct for the finite population, essentially treating it as an «approximately infinite» population.

If one is interested in measuring an existing finite population that will not change over time, then it is necessary to adjust for the population size (called an enumerative study). When the sampling fraction (often termed f) is large (approximately at 5% or more) in an enumerative study, the estimate of the standard error must be corrected by multiplying by a »finite population correction» (a.k.a.: FPC):[9]
[10]

{displaystyle operatorname {FPC} ={sqrt {frac {N-n}{N-1}}}}

which, for large N:

{displaystyle operatorname {FPC} approx {sqrt {1-{frac {n}{N}}}}={sqrt {1-f}}}

to account for the added precision gained by sampling close to a larger percentage of the population. The effect of the FPC is that the error becomes zero when the sample size n is equal to the population size N.

This happens in survey methodology when sampling without replacement. If sampling with replacement, then FPC does not come into play.

Correction for correlation in the sample[edit]

Expected error in the mean of A for a sample of n data points with sample bias coefficient ρ. The unbiased standard error plots as the ρ = 0 diagonal line with log-log slope −½.

If values of the measured quantity A are not statistically independent but have been obtained from known locations in parameter space x, an unbiased estimate of the true standard error of the mean (actually a correction on the standard deviation part) may be obtained by multiplying the calculated standard error of the sample by the factor f:

f={sqrt {frac {1+rho }{1-rho }}},

where the sample bias coefficient ρ is the widely used Prais–Winsten estimate of the autocorrelation-coefficient (a quantity between −1 and +1) for all sample point pairs. This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike.[11] See also unbiased estimation of standard deviation for more discussion.

See also[edit]

  • Illustration of the central limit theorem
  • Margin of error
  • Probable error
  • Standard error of the weighted mean
  • Sample mean and sample covariance
  • Standard error of the median
  • Variance

References[edit]

  1. ^ a b c d Altman, Douglas G; Bland, J Martin (2005-10-15). «Standard deviations and standard errors». BMJ: British Medical Journal. 331 (7521): 903. doi:10.1136/bmj.331.7521.903. ISSN 0959-8138. PMC 1255808. PMID 16223828.
  2. ^ Everitt, B. S. (2003). The Cambridge Dictionary of Statistics. CUP. ISBN 978-0-521-81099-9.
  3. ^ Gurland, J; Tripathi RC (1971). «A simple approximation for unbiased estimation of the standard deviation». American Statistician. 25 (4): 30–32. doi:10.2307/2682923. JSTOR 2682923.
  4. ^ Sokal; Rohlf (1981). Biometry: Principles and Practice of Statistics in Biological Research (2nd ed.). p. 53. ISBN 978-0-7167-1254-1.
  5. ^ Hutchinson, T. P. (1993). Essentials of Statistical Methods, in 41 pages. Adelaide: Rumsby. ISBN 978-0-646-12621-0.
  6. ^ Cornell, J R, and Benjamin, C A, Probability, Statistics, and Decisions for Civil Engineers, McGraw-Hill, NY, 1970, ISBN 0486796094, pp. 178–9.
  7. ^ Barde, M. (2012). «What to use to express the variability of data: Standard deviation or standard error of mean?». Perspect. Clin. Res. 3 (3): 113–116. doi:10.4103/2229-3485.100662. PMC 3487226. PMID 23125963.
  8. ^ Wassertheil-Smoller, Sylvia (1995). Biostatistics and Epidemiology : A Primer for Health Professionals (Second ed.). New York: Springer. pp. 40–43. ISBN 0-387-94388-9.
  9. ^ Isserlis, L. (1918). «On the value of a mean as calculated from a sample». Journal of the Royal Statistical Society. 81 (1): 75–81. doi:10.2307/2340569. JSTOR 2340569. (Equation 1)
  10. ^ Bondy, Warren; Zlot, William (1976). «The Standard Error of the Mean and the Difference Between Means for Finite Populations». The American Statistician. 30 (2): 96–97. doi:10.1080/00031305.1976.10479149. JSTOR 2683803. (Equation 2)
  11. ^ Bence, James R. (1995). «Analysis of Short Time Series: Correcting for Autocorrelation». Ecology. 76 (2): 628–639. doi:10.2307/1941218. JSTOR 1941218.

From Wikipedia, the free encyclopedia

For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

The standard error (SE)[1] of a statistic (usually an estimate of a parameter) is the standard deviation of its sampling distribution[2] or an estimate of that standard deviation. If the statistic is the sample mean, it is called the standard error of the mean (SEM).[1]

The sampling distribution of a mean is generated by repeated sampling from the same population and recording of the sample means obtained. This forms a distribution of different means, and this distribution has its own mean and variance. Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

Therefore, the relationship between the standard error of the mean and the standard deviation is such that, for a given sample size, the standard error of the mean equals the standard deviation divided by the square root of the sample size.[1] In other words, the standard error of the mean is a measure of the dispersion of sample means around the population mean.

In regression analysis, the term «standard error» refers either to the square root of the reduced chi-squared statistic or the standard error for a particular regression coefficient (as used in, say, confidence intervals).

Standard error of the sample mean[edit]

Exact value[edit]

Suppose a statistically independent sample of n observations {displaystyle x_{1},x_{2},ldots ,x_{n}} is taken from a statistical population with a standard deviation of sigma . The mean value calculated from the sample, {bar {x}}, will have an associated standard error on the mean, {displaystyle {sigma }_{bar {x}}}, given by:[1]

{displaystyle {sigma }_{bar {x}} ={frac {sigma }{sqrt {n}}}}.

Practically this tells us that when trying to estimate the value of a population mean, due to the factor 1/{sqrt {n}}, reducing the error on the estimate by a factor of two requires acquiring four times as many observations in the sample; reducing it by a factor of ten requires a hundred times as many observations.

Estimate[edit]

The standard deviation sigma of the population being sampled is seldom known. Therefore, the standard error of the mean is usually estimated by replacing sigma with the sample standard deviation sigma _{x} instead:

{displaystyle {sigma }_{bar {x}} approx {frac {sigma _{x}}{sqrt {n}}}}.

As this is only an estimator for the true «standard error», it is common to see other notations here such as:

{displaystyle {widehat {sigma }}_{bar {x}}approx {frac {sigma _{x}}{sqrt {n}}}} or alternately {displaystyle {s}_{bar {x}} approx {frac {s}{sqrt {n}}}}.

A common source of confusion occurs when failing to distinguish clearly between:

Accuracy of the estimator[edit]

When the sample size is small, using the standard deviation of the sample instead of the true standard deviation of the population will tend to systematically underestimate the population standard deviation, and therefore also the standard error. With n = 2, the underestimate is about 25%, but for n = 6, the underestimate is only 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect.[3] Sokal and Rohlf (1981) give an equation of the correction factor for small samples of n < 20.[4] See unbiased estimation of standard deviation for further discussion.

Derivation[edit]

The standard error on the mean may be derived from the variance of a sum of independent random variables,[5] given the definition of variance and some simple properties thereof. If {displaystyle x_{1},x_{2},ldots ,x_{n}} are n independent samples from a population with mean {bar {x}} and standard deviation sigma , then we can define the total

{displaystyle T=(x_{1}+x_{2}+cdots +x_{n})}

which due to the Bienaymé formula, will have variance

{displaystyle operatorname {Var} (T)approx {big (}operatorname {Var} (x_{1})+operatorname {Var} (x_{2})+cdots +operatorname {Var} (x_{n}){big )}=nsigma ^{2}.}

where we’ve approximated the standard deviations, i.e., the uncertainties, of the measurements themselves with the best value for the standard deviation of the population. The mean of these measurements {bar {x}} is simply given by

{displaystyle {bar {x}}=T/n}.

The variance of the mean is then

{displaystyle operatorname {Var} ({bar {x}})=operatorname {Var} left({frac {T}{n}}right)={frac {1}{n^{2}}}operatorname {Var} (T)={frac {1}{n^{2}}}nsigma ^{2}={frac {sigma ^{2}}{n}}.}

The standard error is, by definition, the standard deviation of {bar {x}} which is simply the square root of the variance:

{displaystyle sigma _{bar {x}}={sqrt {frac {sigma ^{2}}{n}}}={frac {sigma }{sqrt {n}}}}.

For correlated random variables the sample variance needs to be computed according to the Markov chain central limit theorem.

Independent and identically distributed random variables with random sample size[edit]

There are cases when a sample is taken without knowing, in advance, how many observations will be acceptable according to some criterion. In such cases, the sample size N is a random variable whose variation adds to the variation of X such that,

{displaystyle operatorname {Var} (T)=operatorname {E} (N)operatorname {Var} (X)+operatorname {Var} (N){big (}operatorname {E} (X){big )}^{2}}[6]

If N has a Poisson distribution, then {displaystyle operatorname {E} (N)=operatorname {Var} (N)} with estimator {displaystyle N=n}. Hence the estimator of {displaystyle operatorname {Var} (T)} becomes {displaystyle nS_{X}^{2}+n{bar {X}}^{2}}, leading the following formula for standard error:

{displaystyle operatorname {Standard~Error} ({bar {X}})={sqrt {frac {S_{X}^{2}+{bar {X}}^{2}}{n}}}}

(since the standard deviation is the square root of the variance)

Student approximation when σ value is unknown[edit]

In many practical applications, the true value of σ is unknown. As a result, we need to use a distribution that takes into account that spread of possible σ’s.
When the true underlying distribution is known to be Gaussian, although with unknown σ, then the resulting estimated distribution follows the Student t-distribution. The standard error is the standard deviation of the Student t-distribution. T-distributions are slightly different from Gaussian, and vary depending on the size of the sample. Small samples are somewhat more likely to underestimate the population standard deviation and have a mean that differs from the true population mean, and the Student t-distribution accounts for the probability of these events with somewhat heavier tails compared to a Gaussian. To estimate the standard error of a Student t-distribution it is sufficient to use the sample standard deviation «s» instead of σ, and we could use this value to calculate confidence intervals.

Note: The Student’s probability distribution is approximated well by the Gaussian distribution when the sample size is over 100. For such samples one can use the latter distribution, which is much simpler.

Assumptions and usage[edit]

An example of how {displaystyle operatorname {SE} } is used is to make confidence intervals of the unknown population mean. If the sampling distribution is normally distributed, the sample mean, the standard error, and the quantiles of the normal distribution can be used to calculate confidence intervals for the true population mean. The following expressions can be used to calculate the upper and lower 95% confidence limits, where {bar {x}} is equal to the sample mean, {displaystyle operatorname {SE} } is equal to the standard error for the sample mean, and 1.96 is the approximate value of the 97.5 percentile point of the normal distribution:

Upper 95% limit {displaystyle ={bar {x}}+(operatorname {SE} times 1.96),} and
Lower 95% limit {displaystyle ={bar {x}}-(operatorname {SE} times 1.96).}

In particular, the standard error of a sample statistic (such as sample mean) is the actual or estimated standard deviation of the sample mean in the process by which it was generated. In other words, it is the actual or estimated standard deviation of the sampling distribution of the sample statistic. The notation for standard error can be any one of SE, SEM (for standard error of measurement or mean), or SE.

Standard errors provide simple measures of uncertainty in a value and are often used because:

  • in many cases, if the standard error of several individual quantities is known then the standard error of some function of the quantities can be easily calculated;
  • when the probability distribution of the value is known, it can be used to calculate an exact confidence interval;
  • when the probability distribution is unknown, Chebyshev’s or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and
  • as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

Standard error of mean versus standard deviation[edit]

In scientific and technical literature, experimental data are often summarized either using the mean and standard deviation of the sample data or the mean with the standard error. This often leads to confusion about their interchangeability. However, the mean and standard deviation are descriptive statistics, whereas the standard error of the mean is descriptive of the random sampling process. The standard deviation of the sample data is a description of the variation in measurements, while the standard error of the mean is a probabilistic statement about how the sample size will provide a better bound on estimates of the population mean, in light of the central limit theorem.[7]

Put simply, the standard error of the sample mean is an estimate of how far the sample mean is likely to be from the population mean, whereas the standard deviation of the sample is the degree to which individuals within the sample differ from the sample mean.[8] If the population standard deviation is finite, the standard error of the mean of the sample will tend to zero with increasing sample size, because the estimate of the population mean will improve, while the standard deviation of the sample will tend to approximate the population standard deviation as the sample size increases.

Extensions[edit]

Finite population correction (FPC)[edit]

The formula given above for the standard error assumes that the population is infinite. Nonetheless, it is often used for finite populations when people are interested in measuring the process that created the existing finite population (this is called an analytic study). Though the above formula is not exactly correct when the population is finite, the difference between the finite- and infinite-population versions will be small when sampling fraction is small (e.g. a small proportion of a finite population is studied). In this case people often do not correct for the finite population, essentially treating it as an «approximately infinite» population.

If one is interested in measuring an existing finite population that will not change over time, then it is necessary to adjust for the population size (called an enumerative study). When the sampling fraction (often termed f) is large (approximately at 5% or more) in an enumerative study, the estimate of the standard error must be corrected by multiplying by a »finite population correction» (a.k.a.: FPC):[9]
[10]

{displaystyle operatorname {FPC} ={sqrt {frac {N-n}{N-1}}}}

which, for large N:

{displaystyle operatorname {FPC} approx {sqrt {1-{frac {n}{N}}}}={sqrt {1-f}}}

to account for the added precision gained by sampling close to a larger percentage of the population. The effect of the FPC is that the error becomes zero when the sample size n is equal to the population size N.

This happens in survey methodology when sampling without replacement. If sampling with replacement, then FPC does not come into play.

Correction for correlation in the sample[edit]

Expected error in the mean of A for a sample of n data points with sample bias coefficient ρ. The unbiased standard error plots as the ρ = 0 diagonal line with log-log slope −½.

If values of the measured quantity A are not statistically independent but have been obtained from known locations in parameter space x, an unbiased estimate of the true standard error of the mean (actually a correction on the standard deviation part) may be obtained by multiplying the calculated standard error of the sample by the factor f:

f={sqrt {frac {1+rho }{1-rho }}},

where the sample bias coefficient ρ is the widely used Prais–Winsten estimate of the autocorrelation-coefficient (a quantity between −1 and +1) for all sample point pairs. This approximate formula is for moderate to large sample sizes; the reference gives the exact formulas for any sample size, and can be applied to heavily autocorrelated time series like Wall Street stock quotes. Moreover, this formula works for positive and negative ρ alike.[11] See also unbiased estimation of standard deviation for more discussion.

See also[edit]

  • Illustration of the central limit theorem
  • Margin of error
  • Probable error
  • Standard error of the weighted mean
  • Sample mean and sample covariance
  • Standard error of the median
  • Variance

References[edit]

  1. ^ a b c d Altman, Douglas G; Bland, J Martin (2005-10-15). «Standard deviations and standard errors». BMJ: British Medical Journal. 331 (7521): 903. doi:10.1136/bmj.331.7521.903. ISSN 0959-8138. PMC 1255808. PMID 16223828.
  2. ^ Everitt, B. S. (2003). The Cambridge Dictionary of Statistics. CUP. ISBN 978-0-521-81099-9.
  3. ^ Gurland, J; Tripathi RC (1971). «A simple approximation for unbiased estimation of the standard deviation». American Statistician. 25 (4): 30–32. doi:10.2307/2682923. JSTOR 2682923.
  4. ^ Sokal; Rohlf (1981). Biometry: Principles and Practice of Statistics in Biological Research (2nd ed.). p. 53. ISBN 978-0-7167-1254-1.
  5. ^ Hutchinson, T. P. (1993). Essentials of Statistical Methods, in 41 pages. Adelaide: Rumsby. ISBN 978-0-646-12621-0.
  6. ^ Cornell, J R, and Benjamin, C A, Probability, Statistics, and Decisions for Civil Engineers, McGraw-Hill, NY, 1970, ISBN 0486796094, pp. 178–9.
  7. ^ Barde, M. (2012). «What to use to express the variability of data: Standard deviation or standard error of mean?». Perspect. Clin. Res. 3 (3): 113–116. doi:10.4103/2229-3485.100662. PMC 3487226. PMID 23125963.
  8. ^ Wassertheil-Smoller, Sylvia (1995). Biostatistics and Epidemiology : A Primer for Health Professionals (Second ed.). New York: Springer. pp. 40–43. ISBN 0-387-94388-9.
  9. ^ Isserlis, L. (1918). «On the value of a mean as calculated from a sample». Journal of the Royal Statistical Society. 81 (1): 75–81. doi:10.2307/2340569. JSTOR 2340569. (Equation 1)
  10. ^ Bondy, Warren; Zlot, William (1976). «The Standard Error of the Mean and the Difference Between Means for Finite Populations». The American Statistician. 30 (2): 96–97. doi:10.1080/00031305.1976.10479149. JSTOR 2683803. (Equation 2)
  11. ^ Bence, James R. (1995). «Analysis of Short Time Series: Correcting for Autocorrelation». Ecology. 76 (2): 628–639. doi:10.2307/1941218. JSTOR 1941218.

What Is the Standard Error?

The standard error (SE) of a statistic is the approximate standard deviation of a statistical sample population.

The standard error is a statistical term that measures the accuracy with which a sample distribution represents a population by using standard deviation. In statistics, a sample mean deviates from the actual mean of a population; this deviation is the standard error of the mean.

Key Takeaways

  • The standard error (SE) is the approximate standard deviation of a statistical sample population.
  • The standard error describes the variation between the calculated mean of the population and one which is considered known, or accepted as accurate.
  • The more data points involved in the calculations of the mean, the smaller the standard error tends to be.

Standard Error

Understanding Standard Error

The term «standard error» is used to refer to the standard deviation of various sample statistics, such as the mean or median. For example, the «standard error of the mean» refers to the standard deviation of the distribution of sample means taken from a population. The smaller the standard error, the more representative the sample will be of the overall population.

The relationship between the standard error and the standard deviation is such that, for a given sample size, the standard error equals the standard deviation divided by the square root of the sample size. The standard error is also inversely proportional to the sample size; the larger the sample size, the smaller the standard error because the statistic will approach the actual value.

The standard error is considered part of inferential statistics. It represents the standard deviation of the mean within a dataset. This serves as a measure of variation for random variables, providing a measurement for the spread. The smaller the spread, the more accurate the dataset.

Standard error and standard deviation are measures of variability, while central tendency measures include mean, median, etc.

Formula and Calculation of Standard Error

Used in algorithmic trading, the standard error of an estimate can be calculated as the standard deviation divided by the square root of the sample size:

SE = σ / √n

where

  • σ = the population standard deviation
  • n = the square root of the sample size

If the population standard deviation is not known, you can substitute the sample standard deviation, s, in the numerator to approximate the standard error.

Requirements for Standard Error 

When a population is sampled, the mean, or average, is generally calculated. The standard error can include the variation between the calculated mean of the population and one which is considered known, or accepted as accurate. This helps compensate for any incidental inaccuracies related to the gathering of the sample.

In cases where multiple samples are collected, the mean of each sample may vary slightly from the others, creating a spread among the variables. This spread is most often measured as the standard error, accounting for the differences between the means across the datasets.

The more data points involved in the calculations of the mean, the smaller the standard error tends to be. When the standard error is small, the data is said to be more representative of the true mean. In cases where the standard error is large, the data may have some notable irregularities.

The standard deviation is a representation of the spread of each of the data points. The standard deviation is used to help determine the validity of the data based on the number of data points displayed at each level of standard deviation. Standard errors function more as a way to determine the accuracy of the sample or the accuracy of multiple samples by analyzing deviation within the means.

Standard Error vs. Standard Deviation

The standard error normalizes the standard deviation relative to the sample size used in an analysis. Standard deviation measures the amount of variance or dispersion of the data spread around the mean. The standard error can be thought of as the dispersion of the sample mean estimations around the true population mean. As the sample size becomes larger, the standard error will become smaller, indicating that the estimated sample mean value better approximates the population mean.

Example of Standard Error

Say that an analyst has looked at a random sample of 50 companies in the S&P 500 to understand the association between a stock’s P/E ratio and subsequent 12-month performance in the market. Assume that the resulting estimate is -0.20, indicating that for every 1.0 point in the P/E ratio, stocks return 0.2% poorer relative performance. In the sample of 50, the standard deviation was found to be 1.0.

The standard error is thus:

SE = 1.0/50 = 1/7.07 = 0.141

Therefore, we would report the estimate as -0.20% ± 0.14, giving us a confidence interval of (-0.34 — -0.06). The true mean value of the association of the P/E on returns of the S&P 500 would therefore fall within that range with a high degree of probability.

Say now that we increase the sample of stocks to 100 and find that the estimate changes slightly from -0.20 to -0.25, and the standard deviation falls to 0.90. The new standard error would thus be:

SE = 0.90/100 = 0.90/10 = 0.09.

The resulting confidence interval becomes -0.25 ± 0.09 = (-0.34 — -0.16), which is a tighter range of values.

What Is Meant by Standard Error?

Standard error is intuitively the standard deviation of the sampling distribution. In other words, it depicts how much disparity there is likely to be in a point estimate obtained from a sample relative to the true population mean.

What Is a Good Standard Error?

Standard error measures the amount of discrepancy that can be expected in a sample estimate compared to the true value in the population. Therefore, the smaller the standard error the better. In fact, a standard error of zero (or close to it) would indicate that the estimated value is exactly the true value.

How Do You Find the Standard Error?

The standard error takes the standard deviation and divides it by the square root of the sample size. Many statistical software packages automatically compute standard errors.

The Bottom Line

The standard error (SE) measures the dispersion of estimated values obtained from a sample around the true value to be found in the population. Statistical analysis and inference often involves drawing samples and running statistical tests to determine associations and correlations between variables. The standard error thus tells us with what degree of confidence we can expect the estimated value to approximate the population value.


Загрузить PDF


Загрузить PDF

Стандартная ошибка оценки служит для того, чтобы выяснить, как линия регрессии соответствует набору данных. Если у вас есть набор данных, полученных в результате измерения, эксперимента, опроса или из другого источника, создайте линию регрессии, чтобы оценить дополнительные данные. Стандартная ошибка оценки характеризует, насколько верна линия регрессии.

  1. Изображение с названием Calculate the Standard Error of Estimate Step 1

    1

    Создайте таблицу с данными. Таблица должна состоять из пяти столбцов, и призвана облегчить вашу работу с данными. Чтобы вычислить стандартную ошибку оценки, понадобятся пять величин. Поэтому разделите таблицу на пять столбцов. Обозначьте эти столбцы так:[1]

  2. Изображение с названием Calculate the Standard Error of Estimate Step 2

    2

    Введите данные в таблицу. Когда вы проведете эксперимент или опрос, вы получите пары данных — независимую переменную обозначим как x, а зависимую или конечную переменную как y. Введите эти значения в первые два столбца таблицы.

    • Не перепутайте данные. Помните, что определенному значению независимой переменной должно соответствовать конкретное значение зависимой переменной.
    • Например, рассмотрим следующий набор пар данных:
      • (1,2)
      • (2,4)
      • (3,5)
      • (4,4)
      • (5,5)
  3. Изображение с названием Calculate the Standard Error of Estimate Step 3

    3

    Вычислите линию регрессии. Сделайте это на основе представленных данных. Эта линия также называется линией наилучшего соответствия или линией наименьших квадратов. Расчет можно сделать вручную, но это довольно утомительно. Поэтому рекомендуем воспользоваться графическим калькулятором или онлайн-сервисом, которые быстро вычислят линию регрессии по вашим данным.[2]

    • В этой статье предполагается, что уравнение линии регрессии дано (известно).
    • В нашем примере линия регрессии описывается уравнением y^{{prime }}=0,6x+2,2.
  4. Изображение с названием Calculate the Standard Error of Estimate Step 4

    4

    Вычислите прогнозируемые значения по линии регрессии. С помощью уравнения линии регрессии можно вычислить прогнозируемые значения «y» для значений «x», которые есть и которых нет в наборе данных.

    Реклама

  1. Изображение с названием Calculate the Standard Error of Estimate Step 5

    1

    Вычислите ошибку каждого прогнозируемого значения. В четвертом столбце таблицы запишите ошибку каждого прогнозируемого значения. В частности, вычтите прогнозируемое значение (y^{{prime }}) из фактического (наблюдаемого) значения (y).[3]

    • В нашем примере вычисления будут выглядеть так:
  2. Изображение с названием Calculate the Standard Error of Estimate Step 6

    2

    Вычислите квадраты ошибок. Возведите в квадрат каждое значение четвертого столбца, а результаты запишите в последнем (пятом) столбце таблицы.

    • В нашем примере вычисления будут выглядеть так:
  3. Изображение с названием Calculate the Standard Error of Estimate Step 7

    3

    Найдите сумму квадратов ошибок. Она пригодится для вычисления стандартного отклонения, дисперсии и других величин. Чтобы найти сумму квадратов ошибок, сложите все значения пятого столбца. [4]

    • В нашем примере вычисления будут выглядеть так:
      • 0,64+0,36+1,0+0,36+0,04=2,4
  4. Изображение с названием Calculate the Standard Error of Estimate Step 8

    4

    Завершите расчеты. Стандартная ошибка оценки — это квадратный корень из среднего значения суммы квадратов ошибок. Обычно ошибка оценки обозначается греческой буквой sigma . Поэтому сначала разделите сумму квадратов ошибок на число пар данных. А потом из полученного значения извлеките квадратный корень.[5]

    • Если рассматриваемые данные представляют всю совокупность, среднее значение находится так: сумму нужно разделить на N (количество пар данных). Если же рассматриваемые данные представляют некоторую выборку, вместо N подставьте N-2.
    • В нашем примере, скорее всего, имеет место выборка, потому что мы рассматриваем всего 5 пар данных. Поэтому стандартную ошибку оценки вычислите следующим образом:
  5. Изображение с названием Calculate the Standard Error of Estimate Step 9

    5

    Интерпретируйте полученный результат. Стандартная ошибка оценки — это статистический показатель, которые оценивает, насколько близко измеренные данные лежат к линии регрессии. Ошибка оценка «0» означает, что каждая точка лежит непосредственно на линии. Чем выше ошибка оценки, тем дальше от линии регрессии лежат точки.[6]

    • В нашем примере выборка достаточно маленькая, поэтому стандартная оценка ошибки 0,894 является довольно низкой и характеризует близко расположенные данные.

    Реклама

Об этой статье

Эту страницу просматривали 4859 раз.

Была ли эта статья полезной?

Стандартная ошибка

Стандартная ошибка — это стандартное отклонение выборочного распределения статистики. Этот термин также может использоваться для оценки (хорошего предположения) этого стандартного отклонения, взятого из выборки всей группы.

Среднее значение некоторой части группы (называемой выборкой) является обычным способом оценки среднего значения для всей группы. Часто бывает слишком сложно или стоит слишком много денег, чтобы измерить всю группу. Но если измерить другую выборку, то ее среднее значение будет немного отличаться от первой выборки. Стандартная ошибка среднего — это способ узнать, насколько близка средняя по выборке к средней по всей группе. Это способ узнать, насколько вы можете быть уверены в среднем значении по выборке.

В реальных измерениях истинное значение стандартного отклонения среднего для всей группы обычно неизвестно. Поэтому термин стандартная ошибка часто используется для обозначения близкого к истинному значению для всей группы. Чем больше измерений в выборке, тем ближе к истинному значению для всей группы.

Для значения, отобранного с несмещенной нормально распределенной ошибкой, выше показана доля выборок, которые будут находиться в пределах 0, 1, 2 и 3 стандартных отклонений выше и ниже фактического значения.Zoom
Для значения, отобранного с несмещенной нормально распределенной ошибкой, выше показана доля выборок, которые будут находиться в пределах 0, 1, 2 и 3 стандартных отклонений выше и ниже фактического значения.

Как найти стандартную ошибку среднего значения

Один из способов найти стандартную ошибку среднего — это множество выборок. Сначала находят среднее значение для каждой выборки. Затем находят среднее и стандартное отклонение этих средних по выборкам. Стандартное отклонение для всех средних по выборке и есть стандартная ошибка среднего. Это может быть большой объем работы. Иногда иметь большое количество образцов слишком сложно или стоит слишком много денег.

Другой способ найти стандартную ошибку среднего — использовать уравнение, для которого нужна только одна выборка. Стандартная ошибка среднего обычно оценивается по стандартному отклонению для выборки из всей группы (стандартное отклонение выборки), деленному на квадратный корень из размера выборки.

S E x ¯ = s n {displaystyle SE_{bar {x}} ={frac {s}{sqrt {n}}}} {displaystyle SE_{bar {x}} ={frac {s}{sqrt {n}}}}

где

s стандартное отклонение выборки (т.е. выборочная оценка стандартного отклонения популяции), и

n — количество измерений в выборке.

Насколько большой должна быть выборка, чтобы оценка стандартной ошибки среднего была близка к фактической стандартной ошибке среднего для всей группы? В выборке должно быть не менее шести измерений. Тогда стандартная ошибка среднего для выборки будет находиться в пределах 5% от стандартной ошибки среднего, если бы измерялась вся группа.

Исправления для некоторых случаев

Существует еще одно уравнение, которое можно использовать, если количество измерений составляет 5% или более от всей группы:

Существуют специальные уравнения, которые необходимо использовать, если образец имеет менее 20 измерений.

Иногда выборка поступает из одного места, хотя вся группа может быть рассредоточена. Кроме того, иногда выборка может быть сделана за короткий промежуток времени, когда вся группа охватывает более длительный период. В этом случае числа в выборке не являются независимыми. Тогда используются специальные уравнения, чтобы попытаться исправить это.

Полезность

Практический результат: Можно быть более уверенным в среднем значении, если провести больше измерений в выборке. Тогда стандартная ошибка среднего значения будет меньше, поскольку стандартное отклонение делится на большее число. Однако, чтобы сделать неопределенность (стандартную ошибку среднего) среднего значения в два раза меньше, размер выборки (n) должен быть в четыре раза больше. Это происходит потому, что стандартное отклонение делится на квадратный корень из размера выборки. Чтобы сделать неопределенность на одну десятую больше, размер выборки (n) должен быть в сто раз больше!

Стандартные ошибки легко вычисляются и часто используются, потому что:

  • Если известна стандартная ошибка нескольких отдельных величин, то во многих случаях можно легко рассчитать стандартную ошибку некоторой функции этих величин;
  • Если вероятностное распределение значения известно, его можно использовать для расчета хорошего приближения к точному доверительному интервалу; и
  • Если распределение вероятности неизвестно, для оценки доверительного интервала можно использовать другие уравнения
  • Когда размер выборки становится очень большим, принцип центральной предельной теоремы показывает, что числа в выборке очень похожи на числа во всей группе (они имеют нормальное распределение).

Относительная стандартная ошибка

Относительная стандартная ошибка (RSE) — это стандартная ошибка, деленная на среднее значение. Это число меньше единицы. Умножение его на 100% дает его в процентах от среднего значения. Это помогает показать, является ли неопределенность важной или нет. Например, рассмотрим два исследования доходов домохозяйств, в результате которых среднее значение по выборке составляет $50 000. Если стандартная ошибка одного опроса составляет $10 000, а другого — $5 000, то относительные стандартные ошибки равны 20% и 10% соответственно. Опрос с меньшей относительной стандартной ошибкой лучше, потому что он имеет более точное измерение (неопределенность меньше).

На самом деле, люди, которым необходимо знать средние значения, часто решают, насколько мала должна быть неопределенность, прежде чем они решат использовать информацию. Например, Национальный центр статистики здравоохранения США не сообщает среднее значение, если относительная стандартная ошибка превышает 30%. NCHS также требует не менее 30 наблюдений для того, чтобы оценка была представлена в отчете. []

Пример

Например, в воде Мексиканского залива водится много красной рыбы. Чтобы узнать, сколько в среднем весит красноперка длиной 42 см, невозможно измерить всех красноперок длиной 42 см. Вместо этого можно измерить некоторых из них. Рыба, которую измеряют, называется образцом. В таблице показан вес двух образцов красноперки длиной 42 см. Средний (средний) вес первого образца составляет 0,741 кг. Средний (средний) вес второго образца — 0,735 кг, что немного отличается от первого образца. Каждое из этих средних значений немного отличается от среднего значения, которое было бы получено при измерении каждой красной рыбы длиной 42 см (что в любом случае невозможно).

Неопределенность среднего значения можно использовать для того, чтобы узнать, насколько близки средние значения выборок к среднему значению, которое было бы получено в результате измерения всей группы. Неопределенность среднего оценивается как стандартное отклонение для выборки, деленное на квадратный корень из числа выборок минус один. Из таблицы видно, что неопределенности в средних для двух выборок очень близки друг к другу. Кроме того, относительная неопределенность — это неопределенность среднего значения, деленная на среднее значение, умноженное на 100%. Относительная неопределенность в данном примере составляет 2,38% и 2,50% для двух образцов.

Зная неопределенность среднего, можно узнать, насколько близко выборочное среднее к среднему, которое было бы получено в результате измерения всей группы. Среднее по всей группе находится между а) средним по выборке плюс неопределенность в среднем и б) средним по выборке минус неопределенность в среднем. В данном примере средний вес всей красноперки длиной 42 см в Мексиканском заливе, как ожидается, составит 0,723-0,759 кг по первой выборке и 0,717-0,753 по второй выборке.

Zoom

Пример красной рыбы (также известной как красный барабан, Sciaenops ocellatus), используемой в примере.Zoom
Пример красной рыбы (также известной как красный барабан, Sciaenops ocellatus), используемой в примере.

Возможно, вам также будет интересно:

  • Стандартная ошибка эксель формула
  • Стандартная ошибка эконометрика это
  • Стандартная ошибка через стандартное отклонение
  • Стандартная ошибка формула эконометрика
  • Стандартная ошибка уравнения регрессии формула

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии