Случайной ошибкой является погрешность которая

Случайная
погрешность


– это составляющая
погрешности измере­ния, проявляющаяся
в виде непредсказуемых отклонений от
истинного значения физической величины,
меняющихся от одного наблюдения к
другому. Данная погрешность обусловлена
влиянием на результаты из­мерения
множества факторов, воздействие которых
на каждое отдельное измерение невозможно
учесть или заранее предсказать. Такими
причинами могут быть перепады напряжения
в сети, вибрация установки, изменения
атмосферного давления, температуры,
электрических, магнитных и радиационных
полей, а также ошибки, связанные с
действиями самого экспериментатора
(неправильное считывание показаний
приборов, различная скорость реакции
и т. п.).

Случайную погрешность нельзя исключить
из результатов измерений, од­нако,
пользуясь статистическими методами,
можно учесть её влияние на оценку
истинного значения измеряемой величины.

В процессе измерения
оба вида погрешностей проявляются
одновременно, и погрешность измерения
можно представить в виде суммы:

изм
= 
+ 

где 
— случайная, а 
— систематическая погрешности.

Полная погрешность
измерения, являющаяся суммой ука­занных
составляющих, может быть представлена
в абсолютном, относительном или
нормированном виде.

Абсолютная
погрешность

– это погрешность измерения, выражен­ная
в единицах измеряемой величины. Наряду
с абсолютной погрешно­стью часто
используется термин абсолютное
значение погрешности
,
под которым понимают значение погрешности
без учета ее знака. Эти два понятия
различны.

Абсолютная
погрешность
определяется как разность

или



Относительная
погрешность

– это погрешность измерения, выра­женная
отношением абсолютной погрешности к
результату измерения:

Приведенная
погрешность

– это погрешность, выраженная отно­шением
абсолютной погрешности средства
измерения (приборной пог­решности) к
некоторой постоянной величине, называемой
нормирующим
значением

и имеющей размерность измеряемой
величины.

γ = ± (Δ/xN
)100%,

где
xN
– нормированное значение величины. В
качестве нормирующего множителя может
выступать, например, максимальное
значение шкалы прибора (верхний предел
показаний прибора). Поня­тие
приведенной погрешности относится
только к средствам измере­ний.

3.4 Грубые погрешности и промахи. Статические и динамические погрешности

Погрешности,
которые нельзя отнести ни к случайным,
ни к систематическим из-за совершенно
иного механизма образования и принципиально
отличного значения, называют грубыми
погрешностями измерений
или промахами.

Грубая
погрешность

– погрешность измерения, значительно
превышающая погрешности большинства
результатов наблюдений. Такие погрешности
могут возникать вследствие резкого
изменения внешних условий эксперимента:
внезапного изменения температуры,
напряже­ния в сети и т. п. Грубые
погрешности обнаруживают статистическими
методами и соответствующие результаты
измерений, как не отражаю­щие
закономерностей поведения измеряемой
величины, исключают из рассмотрения.

Промах
– это вид грубой погрешности, зависящий
от наблюдате­ля и связанный с
неправильным обращением со средствами
измерений: неверными отсчетами показаний
приборов, описками при записи ре­зультатов,
невнимательностью экспериментатора,
путаницей номеров образцов и т. п. Промахи
обнаруживают нестатистическими методами
и результаты наблюдений, содержащие
промахи, как заведомо непра­вильные,
исключают из рассмотрения. Указанные
составляющие, как правило, не зависят
друг от дру­га, что допускает их
раздельное рассмотрение
.

Очевидно, что
причинами возникновения грубой
погрешности могут быть промах оператора
при снятии отсчета или его записи, ошибка
в реализации методики измерений, сбой
в измерительной цепи прибора или
незамеченное импульсное изменение
влияющей физической величины. Причины
появления результатов с грубыми
погрешностями резко выпадают из ряда
механизмов, формирующих систематические
или случайные составляющие погрешности
измерений.

В зависимости от
режима измерения погрешности
принято делить на
статические и динамические. Статическая
погрешность измерений

(статическая погрешность) – погрешность
результата измерений, свойственная
условиям статического измерения.
Динамическая
погрешность измерений

(динамическая погрешность)

погрешность
результата измерений, свойственная
условиям динамического измерения.

Динамической
погрешностью средства измерений
называется составляющая
погрешности, дополнительная к статической,
и возникающая при измерении в динамическом
режиме. В
соответствии с определением


,

где

– динамическая погрешность средства
измерения;

– погрешность
средства измерения при использовании
его в динамическом режиме;

– статическая
погрешность средства измерения
(погрешность при использовании средства
измерений в статическом режиме).

Логически
обоснованной представляется следующая
укрупненная классификация
погрешностей измерений по степени
полноты информации об
их характере и значениях:

  • определенные
    погрешности,

  • неопределенные
    погрешности.

К определенным
можно отнести любые известные по
числовому значению и знаку погрешности.
Известными могут стать, например те
составляющие погрешности измерений,
которые имеют достаточно жесткую
функциональную связь с вызывающими их
аргументами. Такие погрешности по сути
совпадают с систематическими и
принципиально могут быть выявлены и
исключены из результатов измерений, их
значения можно прогнозировать.
Определенной можно считать также любую
(в том числе и уже зафиксированную
случайную или даже грубую) погрешность,
числовое значение и знак которой получены
экспериментальными методами.

Определенные
погрешности в при достаточной полноте
информации могут быть исключены из
результатов измерений. Теоретическая
определенность систематических
погрешностей делает возможным исключение
этих погрешностей до измерений, в
процессе измерений, а также при
математической обработке результатов
измерительного эксперимента после
выполнения измерений.

К неопределенным
погрешностям следует отнести невыявленные
систематические, а также погрешности
случайные (собственно случайные) и
грубые погрешности, значения которых
не были определены экспериментально.
При исключении определенных погрешностей
абсолютная точность невозможна, поэтому
приходится относить к неопределенным
неисключенные остатки погрешностей.

Неисключенная
систематическая погрешность
– составляющая
погрешности результата измерений,
обусловленная погрешностями вычисления
и введения поправок на влияние
систематических погрешностей или
систематической погрешностью, поправка
на действие которой не введена вследствие
ее малости .

Систематическими
составляющими, значения которых
существенно меньше случайных погрешностей
(
),
пренебрегают. Такие погрешности относят
к пренебрежимо малым неисключенным
систематическим составляющим погрешности
измерения.

7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Свойства физического объекта (явления, процесса) определяются набором
количественных характеристик — физических величин.
Как правило, результат измерения представляет
собой число, задающее отношение измеряемой величины к некоторому эталону.
Сравнение с эталоном может быть как
прямым (проводится непосредственно
экспериментатором), так и косвенным (проводится с помощью некоторого
прибора, которому экспериментатор доверяет).
Полученные таким образом величины имеют размерность, определяемую выбором эталона.

Замечание. Результатом измерения может также служить количество отсчётов некоторого
события, логическое утверждение (да/нет) или даже качественная оценка
(сильно/слабо/умеренно). Мы ограничимся наиболее типичным для физики случаем,
когда результат измерения может быть представлен в виде числа или набора чисел.

Взаимосвязь между различными физическими величинами может быть описана
физическими законами, представляющими собой идеализированную
модель действительности. Конечной целью любого физического
эксперимента (в том числе и учебного) является проверка адекватности или
уточнение параметров таких моделей.

1.1 Результат измерения

Рассмотрим простейший пример: измерение длины стержня
с помощью линейки. Линейка проградуирована производителем с помощью
некоторого эталона длины — таким образом, сравнивая длину
стержня с ценой деления линейки, мы выполняем косвенное сравнение с
общепринятым стандартным эталоном.

Допустим, мы приложили линейку к стержню и увидели на шкале некоторый результат
x=xизм. Можно ли утверждать, что xизм — это длина
стержня?

Во-первых, значение x не может быть задано точно, хотя бы
потому, что оно обязательно округлено до некоторой значащей
цифры: если линейка «обычная», то у неё
есть цена деления; а если линейка, к примеру, «лазерная»
— у неё высвечивается конечное число значащих цифр
на дисплее.

Во-вторых, мы никак не можем быть уверенны, что длина стержня на
самом деле
такова хотя бы с точностью до ошибки округления. Действительно,
мы могли приложить линейку не вполне ровно; сама линейка могла быть
изготовлена не вполне точно; стержень может быть не идеально цилиндрическим
и т.п.

И, наконец, если пытаться хотя бы гипотетически переходить к бесконечной
точности измерения, теряет смысл само понятие «длины стержня». Ведь
на масштабах атомов у стержня нет чётких границ, а значит говорить о его
геометрических размерах в таком случае крайне затруднительно!

Итак, из нашего примера видно, что никакое физическое измерение не может быть
произведено абсолютно точно, то есть
у любого измерения есть погрешность.

Замечание. Также используют эквивалентный термин ошибка измерения
(от англ. error). Подчеркнём, что смысл этого термина отличается от
общеупотребительного бытового: если физик говорит «в измерении есть ошибка»,
— это не означает, что оно неправильно и его надо переделать.
Имеется ввиду лишь, что это измерение неточно, то есть имеет
погрешность.

Количественно погрешность можно было бы определить как разность между
измеренным и «истинным» значением длины стержня:
δ⁢x=xизм-xист. Однако на практике такое определение
использовать нельзя: во-первых, из-за неизбежного наличия
погрешностей «истинное» значение измерить невозможно, и во-вторых, само
«истинное» значение может отличаться в разных измерениях (например, стержень
неровный или изогнутый, его торцы дрожат из-за тепловых флуктуаций и т.д.).
Поэтому говорят обычно об оценке погрешности.

Об измеренной величине также часто говорят как об оценке, подчеркивая,
что эта величина не точна и зависит не только от физических свойств
исследуемого объекта, но и от процедуры измерения.

Замечание. 
Термин оценка имеет и более формальное значение. Оценкой называют результат процедуры получения значения параметра или параметров физической модели, а также иногда саму процедуру. Теория оценок является подразделом математической статистики. Некоторые ее положения изложены в главе 3, но для более серьезного понимания следует обратиться к [5].

Для оценки значения физической величины корректно использовать
не просто некоторое фиксированное число xизм, а интервал (или
диапазон) значений, в пределах которого может лежать её
«истинное» значение. В простейшем случае этот интервал
может быть записан как

где δ⁢x — абсолютная величина погрешности.
Эта запись означает, что исследуемая величина лежит в интервале
x∈(xизм-δ⁢x;xизм+δ⁢x)
с некоторой достаточно большой долей вероятности (более подробно о
вероятностном содержании интервалов см. п. 2.2).
Для наглядной оценки точности измерения удобно также использовать
относительную величину погрешности:

Она показывает, насколько погрешность мала по сравнению с
самой измеряемой величиной (её также можно выразить в процентах:
ε=δ⁢xx⋅100%).

Пример. Штангенциркуль —
прибор для измерения длин с ценой деления 0,1⁢мм. Пусть
диаметр некоторой проволоки равен 0,37 мм. Считая, что абсолютная
ошибка составляет половину цены деления прибора, результат измерения
можно будет записать как d=0,40±0,05⁢мм (или
d=(40±5)⋅10-5⁢м).
Относительная погрешность составляет ε≈13%, то
есть точность измерения весьма посредственная — поскольку
размер объекта близок к пределу точности прибора.

О необходимости оценки погрешностей.

Измерим длины двух стержней x1 и x2 и сравним результаты.
Можно ли сказать, что стержни одинаковы или различны?

Казалось бы,
достаточно проверить, справедливо ли x1=x2. Но никакие
два результата измерения не равны друг другу с абсолютной точностью! Таким
образом, без указания погрешности измерения ответ на этот вопрос дать
невозможно.

С другой стороны, если погрешность δ⁢x известна, то можно
утверждать, что если измеренные длины одинаковы
в пределах погрешности опыта, если |x2-x1|<δ⁢x
(и различны в противоположном случае).

Итак, без знания погрешностей невозможно сравнить между собой никакие
два измерения, и, следовательно, невозможно сделать никаких
значимых выводов по результатам эксперимента: ни о наличии зависимостей
между величинами, ни о практической применимости какой-либо теории,
и т. п. В связи с этим задача правильной оценки погрешностей является крайне
важной, поскольку существенное занижение или завышение значения погрешности
(по сравнению с реальной точностью измерений) ведёт к неправильным выводам.

В физическом эксперименте (в том числе лабораторном практикуме) оценка
погрешностей должна проводиться всегда
(даже когда составители задания забыли упомянуть об этом).

1.2 Многократные измерения

Проведём серию из n одинаковых (однотипных) измерений одной
и той же физической величины (например, многократно приложим линейку к стержню) и получим
ряд значений

Что можно сказать о данном наборе чисел и о длине стержня?
И можно ли увеличивая число измерений улучшить конечный результат?

Если цена деления самой линейки достаточно мала, то как нетрудно убедиться
на практике, величины {xi} почти наверняка окажутся
различными. Причиной тому могут быть
самые разные обстоятельства, например: у нас недостаточно остроты
зрения и точности рук, чтобы каждый раз прикладывать линейку одинаково;
стенки стержня могут быть слегка неровными; у стержня может и не быть
определённой длины, например, если в нём возбуждены звуковые волны,
из-за чего его торцы колеблются, и т. д.

В такой ситуации результат измерения интерпретируется как
случайная величина, описываемая некоторым вероятностным законом
(распределением).
Подробнее о случайных величинах и методах работы с ними см. гл. 2.

По набору результатов 𝐱 можно вычислить их среднее арифметическое:

⟨x⟩=x1+x2+…+xnn≡1n⁢∑i=1nxi. (1.1)

Это значение, вычисленное по результатам конечного числа n измерений,
принято называть выборочным средним. Здесь и далее для обозначения
выборочных средних будем использовать угловые скобки.

Кроме среднего представляет интерес и то, насколько сильно варьируются
результаты от опыта к опыту. Определим отклонение каждого измерения от среднего как

Разброс данных относительно среднего принято характеризовать
среднеквадратичным отклонением:

s=Δ⁢x12+Δ⁢x22+…+Δ⁢xn2n=1n⁢∑i=1nΔ⁢xi2 (1.2)

или кратко

Значение среднего квадрата отклонения s2 называют
выборочной дисперсией.

Будем увеличивать число измерений n (n→∞). Если объект измерения и методика
достаточно стабильны, то отклонения от среднего Δ⁢xi будут, во-первых,
относительно малы, а во-вторых, положительные и отрицательные отклонения будут
встречаться примерно одинаково часто. Тогда при вычислении (1.1)
почти все отклонения Δ⁢xi скомпенсируются и можно ожидать,
что выборочное среднее при n≫1 будет стремиться к некоторому пределу:

Тогда предельное значение x¯ можно отождествить с «истинным» средним
для исследуемой величины.

Предельную величину среднеквадратичного отклонения при n→∞
обозначим как

Замечание. В общем случае указанные пределы могут и не существовать. Например, если измеряемый параметр
меняется во времени или в результате самого измерения, либо испытывает слишком большие
случайные скачки и т. п. Такие ситуации требуют особого рассмотрения и мы на них не
останавливаемся.


Замечание. Если n мало (n<10), для оценки среднеквадратичного отклонения
математическая статистика рекомендует вместо формулы (1.3) использовать
исправленную формулу (подробнее см. п. 5.2):



sn-12=1n-1⁢∑i=1nΔ⁢xi2,

(1.4)


где произведена замена n→n-1. Величину sn-1
часто называют стандартным отклонением.

Итак, можно по крайней мере надеяться на то, что результаты небольшого числа
измерений имеют не слишком большой разброс, так что величина ⟨x⟩
может быть использована как приближенное значение (оценка) истинного значения
⟨x⟩≈x¯,
а увеличение числа измерений позволит уточнить результат.

Многие случайные величины подчиняются так называемому нормальному закону
распределения (подробнее см. Главу 2). Для таких величин
могут быть строго доказаны следующие свойства:

  • при многократном повторении эксперимента бо́льшая часть измерений
    (∼68%) попадает в интервал x¯-σ<x<x¯+σ
    (см. п. 2.2).

  • выборочное среднее значение ⟨x⟩ оказывается с большей
    вероятностью ближе к истинному значению x¯, чем каждое из измерений
    {xi} в отдельности. При этом ошибка вычисления среднего
    убывает пропорционально корню из числа опытов n
    (см. п. 2.4).


Упражнение. Показать, что



s2=⟨x2⟩-⟨x⟩2.

(1.5)


то есть дисперсия равна разности среднего значения квадрата
⟨x2⟩=1n⁢∑i=1nxi2
и квадрата среднего ⟨x⟩2=(1n⁢∑i=1nxi)2.

1.3 Классификация погрешностей

Чтобы лучше разобраться в том, нужно ли многократно повторять измерения,
и в каком случае это позволит улучшить результаты опыта,
проанализируем источники и виды погрешностей.

В первую очередь, многократные измерения позволяют проверить
воспроизводимость результатов: повторные измерения в одинаковых
условиях, должны давать близкие результаты. В противном случае
исследование будет существенно затруднено, если вообще возможно.
Таким образом, многократные измерения необходимы для того,
чтобы убедиться как в надёжности методики, так и в существовании измеряемой
величины как таковой.

При любых измерениях возможны грубые ошибки — промахи
(англ. miss). Это «ошибки» в стандартном
понимании этого слова — возникающие по вине экспериментатора
или в силу других непредвиденных обстоятельств (например, из-за сбоя
аппаратуры). Промахов, конечно, нужно избегать, а результаты таких
измерений должны быть по возможности исключены из рассмотрения.

Как понять, является ли «аномальный» результат промахом? Вопрос этот весьма
непрост. В литературе существуют статистические
критерии отбора промахов, которыми мы, однако, настоятельно не рекомендуем
пользоваться (по крайней мере, без серьезного понимания последствий
такого отбора). Отбрасывание аномальных данных может, во-первых, привести
к тенденциозному искажению результата исследований, а во-вторых, так
можно упустить открытие неизвестного эффекта. Поэтому при научных
исследованиях необходимо максимально тщательно проанализировать причину
каждого промаха, в частности, многократно повторив эксперимент. Лишь
только если факт и причина промаха установлены вполне достоверно,
соответствующий результат можно отбросить.

Замечание. Часто причины аномальных отклонений невозможно установить на этапе
обработки данных, поскольку часть информации о проведении измерений к этому моменту
утеряна. Единственным способ борьбы с этим — это максимально подробное описание всего
процесса измерений в лабораторном журнале. Подробнее об этом
см. п. 4.1.1.

При многократном повторении измерении одной и той же физической величины
погрешности могут иметь систематический либо случайный
характер. Назовём погрешность систематической, если она повторяется
от опыта к опыту, сохраняя свой знак и величину, либо закономерно
меняется в процессе измерений. Случайные (или статистические)
погрешности меняются хаотично при повторении измерений как по величине,
так и по знаку, и в изменениях не прослеживается какой-либо закономерности.

Кроме того, удобно разделять погрешности по их происхождению. Можно
выделить

  • инструментальные (или приборные) погрешности,
    связанные с несовершенством конструкции (неточности, допущенные при
    изготовлении или вследствие старения), ошибками калибровки или ненормативными
    условиями эксплуатации измерительных приборов;

  • методические погрешности, связанные с несовершенством
    теоретической модели явления (использование приближенных формул и
    моделей явления) или с несовершенством методики измерения (например,
    влиянием взаимодействия прибора и объекта измерения на результат измерения);

  • естественные погрешности, связанные со случайным
    характером
    измеряемой физической величины — они являются не столько
    «ошибками» измерения, сколько характеризуют
    природу изучаемого объекта или явления.

Замечание. Разделение погрешностей на систематические и случайные
не является однозначным и зависит от постановки опыта. Например, производя
измерения не одним, а несколькими однотипными приборами, мы переводим
систематическую приборную ошибку, связанную с неточностью шкалы и
калибровки, в случайную. Разделение по происхождению также условно,
поскольку любой прибор подвержен воздействию «естественных»
случайных и систематических ошибок (шумы и наводки, тряска, атмосферные
условия и т. п.), а в основе работы прибора всегда лежит некоторое
физическое явление, описываемое не вполне совершенной теорией.

1.3.1 Случайные погрешности

Случайный характер присущ большому количеству различных физических
явлений, и в той или иной степени проявляется в работе всех без исключения
приборов. Случайные погрешности обнаруживаются просто при многократном
повторении опыта — в виде хаотичных изменений (флуктуаций)
значений {xi}.

Если случайные отклонения от среднего в большую или меньшую стороны
примерно равновероятны, можно рассчитывать, что при вычислении среднего
арифметического (1.1) эти отклонения скомпенсируются,
и погрешность результирующего значения ⟨x⟩ будем меньше,
чем погрешность отдельного измерения.

Случайные погрешности бывают связаны, например,

  • с особенностями используемых приборов: техническими
    недостатками
    (люфт в механических приспособлениях, сухое трение в креплении стрелки
    прибора), с естественными (тепловой и дробовой шумы в электрических
    цепях, тепловые флуктуации и колебания измерительных устройств из-за
    хаотического движения молекул, космическое излучение) или техногенными
    факторами (тряска, электромагнитные помехи и наводки);

  • с особенностями и несовершенством методики измерения (ошибка
    при отсчёте по шкале, ошибка времени реакции при измерениях с секундомером);

  • с несовершенством объекта измерений (неровная поверхность,
    неоднородность состава);

  • со случайным характером исследуемого явления (радиоактивный
    распад, броуновское движение).

Остановимся несколько подробнее на двух последних случаях. Они отличаются
тем, что случайный разброс данных в них порождён непосредственно объектом
измерения. Если при этом приборные погрешности малы, то «ошибка»
эксперимента возникает лишь в тот момент, когда мы по своей
воле
совершаем замену ряда измеренных значений на некоторое среднее
{xi}→⟨x⟩. Разброс данных при этом
характеризует не точность измерения, а сам исследуемый объект или
явление. Однако с математической точки зрения приборные и
«естественные»
погрешности неразличимы — глядя на одни только
экспериментальные данные невозможно выяснить, что именно явилось причиной
их флуктуаций: сам объект исследования или иные, внешние причины.
Таким образом, для исследования естественных случайных процессов необходимо
сперва отдельно исследовать и оценить случайные инструментальные погрешности
и убедиться, что они достаточно малы.

1.3.2 Систематические погрешности

Систематические погрешности, в отличие от случайных, невозможно обнаружить,
исключить или уменьшить просто многократным повторением измерений.
Они могут быть обусловлены, во-первых, неправильной работой приборов
(инструментальная погрешность), например, сдвигом нуля отсчёта
по шкале, деформацией шкалы, неправильной калибровкой, искажениями
из-за не нормативных условий эксплуатации, искажениями из-за износа
или деформации деталей прибора, изменением параметров прибора во времени
из-за нагрева и т.п. Во-вторых, их причиной может быть ошибка в интерпретации
результатов (методическая погрешность), например, из-за использования
слишком идеализированной физической модели явления, которая не учитывает
некоторые значимые факторы (так, при взвешивании тел малой плотности
в атмосфере необходимо учитывать силу Архимеда; при измерениях в электрических
цепях может быть необходим учет неидеальности амперметров и вольтметров
и т. д.).

Систематические погрешности условно можно разделить на следующие категории.

  1. 1.

    Известные погрешности, которые могут быть достаточно точно вычислены
    или измерены. При необходимости они могут быть учтены непосредственно:
    внесением поправок в расчётные формулы или в результаты измерений.
    Если они малы, их можно отбросить, чтобы упростить вычисления.

  2. 2.

    Погрешности известной природы, конкретная величина которых неизвестна,
    но максимальное значение вносимой ошибки может быть оценено теоретически
    или экспериментально. Такие погрешности неизбежно присутствуют в любом
    опыте, и задача экспериментатора — свести их к минимуму,
    совершенствуя методики измерения и выбирая более совершенные приборы.

    Чтобы оценить величину систематических погрешностей опыта, необходимо
    учесть паспортную точность приборов (производитель, как правило, гарантирует,
    что погрешность прибора не превосходит некоторой величины), проанализировать
    особенности методики измерения, и по возможности, провести контрольные
    опыты.

  3. 3.

    Погрешности известной природы, оценка величины которых по каким-либо
    причинам затруднена (например, сопротивление контактов при подключении
    электронных приборов). Такие погрешности должны быть обязательно исключены
    посредством модификации методики измерения или замены приборов.

  4. 4.

    Наконец, нельзя забывать о возможности существования ошибок, о
    которых мы не подозреваем, но которые могут существенно искажать результаты
    измерений. Такие погрешности самые опасные, а исключить их можно только
    многократной независимой проверкой измерений, разными методами
    и в разных условиях.

В учебном практикуме учёт систематических погрешностей ограничивается,
как правило, паспортными погрешностями приборов и теоретическими поправками
к упрощенной модели исследуемого явления.

Точный учет систематической ошибки возможен только при учете специфики конкретного эксперимента. Особенное внимание надо обратить на зависимость (корреляцию) систематических смещений при повторных измерениях. Одна и та же погрешность в разных случаях может быть интерпретирована и как случайная, и как систематическая.


Пример. 
Калибровка электромагнита производится при помощи внесения в него датчика Холла или другого измерителя магнитного потока. При последовательных измерениях с разными токами (и соотственно полями в зазоре) калибровку можно учитыать двумя различными способами:




Измерить значение поля для разных токов, построить линейную калибровочную кривую и потом использовать значения, восстановленные по этой кривой для вычисления поля по току, используемому в измерениях.



Для каждого измерения проводить допольнительное измерения поля и вообще не испльзовать значения тока.


В первом случае погрешность полученного значения будет меньше, поскльку при проведении прямой, отдельные отклонения усреднятся. При этом погрешность измерения поля будет носить систематический харрактер и при обработке данных ее надо будет учитывать в последний момент. Во втором случае погрешность будет носить статистический (случайный) харрактер и ее надо будет добавить к погрешности каждой измеряемой точки. При этом сама погрешность будет больше. Выбор той или иной методики зависит от конретной ситуации. При большом количестве измерений, второй способ более надежный, поскольку статистическая ошибка при усреднении уменьшается пропорционально корню из количества измерений. Кроме того, такой способ повзоляет избежать методической ошибки, связанной с тем, что зависимость поля от тока не является линейной.


Пример. 
Рассмотрим измерение напряжения по стрелочному вольтметру. В показаниях прибора будет присутствовать три типа погрешности:


1.

Статистическая погрешность, связанная с дрожанием стрелки и ошибкой визуального наблюдения, примерно равная половине цены деления.

2.

Систематическая погрешность, связанная с неправильной установкой нуля.

3.

Систематическая погрешность, связанная с неправильным коэффициентом пропорциональности между напряжением и отклонением стрелки. Как правило приборы сконструированы таким образом, чтобы максимальное значение этой погрешности было так же равно половине цены деления (хотя это и не гарантируется).


Случайная погрешность — это ошибка в измерениях, которая носит неконтролируемый характер и очень труднопредсказуема. Так происходит из-за того, что существует огромное количество параметров, находящихся вне контроля экспериментатора, которые влияют на итоговые показатели. Случайные погрешности с абсолютной точностью вычислить невозможно. Они вызваны не сразу очевидными источниками и требуют много времени на выяснение причины их возникновения.

случайная погрешность это

Как определить наличие случайной погрешности

Непредсказуемые ошибки присутствует не во всех измерениях. Но для того чтобы полностью исключить ее возможное влияние на результаты измерений, необходимо повторить эту процедуру несколько раз. Если итог не меняется от эксперимента к эксперименту либо изменяется, но на определенное относительное число — величина этой случайной погрешности равна нулю, и о ней можно не думать. И, наоборот, если полученный результат измерений каждый раз другой (близкий к какому-то среднему значению, но отличный), и отличия носят неопределенный характер, следовательно, на него влияет непредсказуемая ошибка.

Пример возникновения

Случайная составляющая погрешности возникает вследствие действия различных факторов. Например, при измерении сопротивления проводника, необходимо собрать электрическую цепь, состоящую из вольтметра, амперметра и источника тока, которым служит выпрямитель, подключенный в осветительную сеть. Первым делом нужно измерить напряжение, записав показания с вольтметра. Затем перенести взгляд на амперметр, чтобы зафиксировать его данные о силе тока. После использовать формулу, где R = U / I.

случайная погрешность формула

Но может случиться так, что в момент снятия показаний с вольтметра в соседней комнате включили кондиционер. Это довольно мощный прибор. В результате этого напряжение сети немного уменьшилось. Если бы не пришлось отводить взгляд на амперметр, можно было заметить, что показания вольтметра изменились. Поэтому данные первого прибора уже не соответствуют записанным ранее значениям. Из-за непредсказуемого включения кондиционера в соседней комнате получается результат уже со случайной погрешностью. Сквозняки, трения в осях измерительных приборов — потенциальные источники ошибок в измерениях.

Как проявляется

Допустим, необходимо рассчитать сопротивление круглого проводника. Для этого нужно знать его длину и диаметр. Помимо этого, учитывается удельное сопротивление материала, из которого он изготовлен. При измерении длины проводника случайная погрешность себя проявлять не будет. Ведь этот параметр всегда один и тот же. Но вот при измерении диаметра штангенциркулем или микрометром окажется, что данные разняться. Так происходит потому, что идеально круглый проводник невозможно изготовить в принципе. Поэтому, если измерить диаметр в нескольких местах изделия, то он может оказаться разным вследствие действия непредсказуемых факторов в момент его изготовления. Это случайная погрешность.

Иногда она также называется статистической погрешностью, поскольку эту величину можно уменьшить, увеличив количество экспериментов при одинаковых условиях их проведения.

величина случайной погрешности

Природа возникновения

В отличие от систематической ошибки, простое усреднение нескольких итоговых показателей одной и той же величины компенсирует случайные погрешности результатов измерений. Природа их возникновения определяется очень редко, и поэтому никогда не фиксируется, как постоянная величина. Случайная погрешность — это отсутствие каких-либо природных закономерностей. Например, она не пропорциональна измеряемой величине или никогда не остается постоянной при проведении нескольких измерений.

Может существовать ряд возможных источников случайных ошибок в экспериментах, и он полностью зависит от типа эксперимента и используемых приборов.

Например, биолог, изучающий размножение конкретного штамма бактерии, может столкнуться с непредсказуемой ошибкой из-за небольшого изменения температуры или освещения в помещении. Однако когда эксперимент будет повторяться в течение определенного периода времени, он избавится от этих различий в результатах путем их усреднения.

случайные погрешности результатов измерений

Формула случайной погрешности

Допустим, нужно определить какую-то физическую величину x. Чтобы исключить случайную погрешность необходимо провести несколько измерений, итогом которых будет серия результатов N количества измерений — x1, x2,…, xn.

Чтобы обработать эти данные следует:

  1. За результат измерений х0 принять среднее арифметическое х̅. Иными словами, х0 = (x1 + x2 +… + xn) / N.
  2. Найти стандартное отклонение. Обозначается оно греческой буквой σ и вычисляется следующим образом: σ = √((х1 — х̅ )2 + (х2-х̅ )2 + … + (хn — х̅ )2 / N — 1). Физический смысл σ состоит в том, что если провести еще одно измерение (N+1), то оно с вероятностью 997 шансов из 1000 ляжет в интервал х̅ -3σ < хn+1 < с + 3σ.
  3. Найти границу абсолютной погрешности среднего арифметического х̅. Находится она по следующей формуле: Δх = 3σ / √N.
  4. Ответ: х = х̅ + (-Δх).

Относительная погрешность будет равна ε = Δх /х̅.

случайная составляющая погрешности

Пример вычисления

Формулы расчета случайной погрешности достаточно громоздкие, поэтому, чтобы не запутаться в вычислениях, лучше использовать табличный способ.

Пример:

При измерении длины l, были получены следующие значения: 250 см, 245 см, 262 см, 248 см, 260 см. Количество измерений N = 5.

N п/п

l, см

I ср. арифм., см

|l-l ср. арифм.|

(l-l ср. арифм.)2

σ, см

Δ l, см

1

250

253,0

3

9

7,55

10,13

2

245

8

64

3

262

9

81

4

248

5

25

5

260

7

49

Σ = 1265

Σ = 228

Относительная погрешность равна ε = 10,13 см / 253,0 см = 0,0400 см.

Ответ: l = (253 + (-10)) см, ε = 4 %.

Практическая польза высокой точности измерений

Следует учитывать, что достоверность результатов тем выше, чем большее количество измерений проводится. Чтобы повысить точность в 10 раз, необходимо провести в 100 раз больше измерений. Это достаточно трудоемкое занятие. Однако оно может привести к очень важным результатам. Иногда приходится иметь дело со слабыми сигналами.

абсолютная случайная погрешность

Например, в астрономических наблюдениях. Допустим, необходимо изучить звезду, блеск которой изменяется периодически. Но это небесное тело настолько далеко, что шум электронной аппаратуры или датчиков, принимающих излучения, может быть во много раз больше, чем сигнал, который необходимо обработать. Что же делать? Оказывается, если проводить миллионы измерений, то возможно среди этого шума выделить необходимый сигнал с очень большой достоверностью. Однако для этого потребуется совершать огромное количество измерений. Такая методика используется, чтобы различать слабые сигналы, которые едва заметны на фоне различных шумов.

Причина, по которой случайные погрешности могут быть решены путем усреднения, заключается в том, что они имеют нулевое ожидаемое значение. Они действительно непредсказуемы и разбросаны по среднему значению. Исходя из этого, среднее арифметическое ошибок ожидается равным нулю.

Случайная погрешность присутствуют в большинстве экспериментов. Поэтому исследователь должен быть подготовлен к ним. В отличие от систематических, случайные погрешности не предсказуемы. Это затрудняет их обнаружение, но от них легче избавиться, поскольку они являются статистическими и удаляются математическим методом, таким как усреднение.

14. Виды погрешностей

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Погрешности измерений классифицируются по следующим признакам.

По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность вычисляется по следующей формуле:

?Qn =Qn ?Q0,

где AQn – абсолютная погрешность;

Qn – значение некой величины, полученное в процессе измерения;

Q0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Относительная погрешность вычисляется по следующей формуле:

где ?Q – абсолютная погрешность;

Q0 – настоящее (действительное) значение измеряемой величины.

Относительная погрешность выражается в процентах.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из—за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из—за низкой степени квалификации оператора средства измерений, а также из—за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из—за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

Данный текст является ознакомительным фрагментом.

Читайте также

Виды пиломатериалов

Виды пиломатериалов
Чаще всего в магазинах и на лесобазах продается уже высушенная древесина, а сырая встречается довольно редко. В зависимости от того, что вы хотите сделать и на что вам понадобилась древесина, вы можете приобрести кряж (целые стволы дерева или длинные

Виды пиломатериалов

Виды пиломатериалов
В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных

Виды пиломатериалов

Виды пиломатериалов
В зависимости от назначения элемента конструкции, для которого используется тот или иной пиломатериал, необходимо определять и его размеры:– для стропил, балок цокольных и междуэтажных перекрытий, а также проступей ступеней лестниц и наружных

Виды соединений

Виды соединений
Все соединения, будь то плотничные или столярные, называются посадками, потому что в их основе лежит принцип насаживания детали с шипом на деталь с пазом. В зависимости от того, как плотно соприкасаются детали в креплении, все посадки разделяются на

5.4 Виды проборок

5.4 Виды проборок
Проборки, применяемые в ткачестве очень разнообразны. Их разнообразие определяется соотношением трех величин: Ro переплетения, Rnp. и количеством ремизок К.Рассмотрим пример, когда Ro = К = Rnp. В этом случае нити основы подряд пробираются в каждую ремизку и

14. Виды погрешностей

14. Виды погрешностей
Выделяют следующие виды погрешностей:1) абсолютная погрешность;2) относительна погрешность;3) приведенная погрешность;4) основная погрешность;5) дополнительная погрешность;6) систематическая погрешность;7) случайная

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей
Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных

6. Виды стандартов

6. Виды стандартов
Выделяют несколько видов стандартов. Применение в конкретной ситуации того или иного стандарта определяется характерными чертами и спецификой объекта стандартизации.Основополагающие стандарты – нормативные документы, утвержденные для

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей
Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных

38. Виды стандартов

38. Виды стандартов
Выделяют несколько видов стандартов.Основополагающие стандарты – нормативные документы, утвержденные для определенных областей науки, техники и производства, содержащие в себе общие положения, принципы, правила и нормы для данных областей. Этот тип

3. виды веревки

3. виды веревки
Основная отличительная черта, определяющая вид данной веревки, ее динамические качества, которые в основном зависят от ее способности удлиняться под нагрузкой. Еще при конструировании веревки в зависимости от желаемых эксплуатационных свойств ее

6.1. Виды иллюстраций

6.1. Виды иллюстраций
ОСТ 29.130—97 «Издания. Термины и определения» так опре–деляет термин «иллюстрация» – изображение, поясняющее или дополняющее основной текст, помещенное на страницах и других элементах материальной конструкции издания.По методу отображения

50. Причины начальных погрешностей

50. Причины начальных погрешностей
Начальные погрешности в измерение могут вноситься по следующим причинам.1.Удельный вес:1) степень однородности среды нарушена вследствие нахождения в ней примесей (в том числе и растворимых газов; такие жидкостные среды в гидравлике

1.5. Виды искусства

1.5. Виды искусства
В процессе исторического развития искусства сложились различные его виды. Эпохи наивысшего расцвета искусства свидетельствуют о том, что полнота отображения мира достигается одновременным расцветом всех искусств. Как известно. Виды искусства можно

Виды ремонта

Виды ремонта
В результате работы автомобиля, детали и узлы постепенно изнашиваются, в результате чего меняются их технические характеристики: увеличиваются зазоры между сопряженными деталями, повышается расход эксплуатационных материалом (топлива, масла, воды и

Погрешность средств измерения и результатов измерения. 

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности. 

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

  • Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
    Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.
  • Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины. 

Систематическая и случайная погрешности. 

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки. 

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности. 

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

– если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0…100), то Xn определяется равным верхнему пределу измерений (Xn=100);
– если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30…100, Xn=Xmax-Xmin=100-30=70);
– если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50…+50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

  • Аддитивной погрешностью называется погрешность, постоянную в каждой точке шкалы.
  • Мультипликативной погрешностью называется погрешность, линейно возрастающую или убывающую с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность 
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность 
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

Возможно, вам также будет интересно:

  • Случайная шальная пуля какая ошибка
  • Случайная систематическая ошибка геодезия
  • Случайная ошибка это погрешность которая вызвана
  • Случайная ошибка фанфик снейджер
  • Случайная ошибка репрезентативности пример

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии