-->

После пишется действие реакция на возможную ошибку выполнения команды

Содержание:развернуть

  • Как устроен механизм исключений
  • Как обрабатывать исключения в Python (try except)
  • As — сохраняет ошибку в переменную

  • Finally — выполняется всегда

  • Else — выполняется когда исключение не было вызвано

  • Несколько блоков except

  • Несколько типов исключений в одном блоке except

  • Raise — самостоятельный вызов исключений

  • Как пропустить ошибку

  • Исключения в lambda функциях
  • 20 типов встроенных исключений в Python
  • Как создать свой тип Exception

Программа, написанная на языке Python, останавливается сразу как обнаружит ошибку. Ошибки могут быть (как минимум) двух типов:

  • Синтаксические ошибки — возникают, когда написанное выражение не соответствует правилам языка (например, написана лишняя скобка);
  • Исключения — возникают во время выполнения программы (например, при делении на ноль).

Синтаксические ошибки исправить просто (если вы используете IDE, он их подсветит). А вот с исключениями всё немного сложнее — не всегда при написании программы можно сказать возникнет или нет в данном месте исключение. Чтобы приложение продолжило работу при возникновении проблем, такие ошибки нужно перехватывать и обрабатывать с помощью блока try/except.

Как устроен механизм исключений

В Python есть встроенные исключения, которые появляются после того как приложение находит ошибку. В этом случае текущий процесс временно приостанавливается и передает ошибку на уровень вверх до тех пор, пока она не будет обработано. Если ошибка не будет обработана, программа прекратит свою работу (а в консоли мы увидим Traceback с подробным описанием ошибки).

💁‍♂️ Пример: напишем скрипт, в котором функция ожидает число, а мы передаём сроку (это вызовет исключение «TypeError»):

def b(value):
print("-> b")
print(value + 1) # ошибка тут

def a(value):
print("-> a")
b(value)

a("10")

> -> a
> -> b
> Traceback (most recent call last):
> File "test.py", line 11, in <module>
> a("10")
> File "test.py", line 8, in a
> b(value)
> File "test.py", line 3, in b
> print(value + 1)
> TypeError: can only concatenate str (not "int") to str

В данном примере мы запускаем файл «test.py» (через консоль). Вызывается функция «a«, внутри которой вызывается функция «b«. Все работает хорошо до сточки print(value + 1). Тут интерпретатор понимает, что нельзя конкатенировать строку с числом, останавливает выполнение программы и вызывает исключение «TypeError».

Далее ошибка передается по цепочке в обратном направлении: «b» → «a» → «test.py«. Так как в данном примере мы не позаботились обработать эту ошибку, вся информация по ошибке отобразится в консоли в виде Traceback.

Traceback (трассировка) — это отчёт, содержащий вызовы функций, выполненные в определенный момент. Трассировка помогает узнать, что пошло не так и в каком месте это произошло.

Traceback лучше читать снизу вверх ↑

Пример Traceback в Python

В нашем примере Traceback содержится следующую информацию (читаем снизу вверх):

  1. TypeError — тип ошибки (означает, что операция не может быть выполнена с переменной этого типа);
  2. can only concatenate str (not "int") to str — подробное описание ошибки (конкатенировать можно только строку со строкой);
  3. Стек вызова функций (1-я линия — место, 2-я линия — код). В нашем примере видно, что в файле «test.py» на 11-й линии был вызов функции «a» со строковым аргументом «10». Далее был вызов функции «b». print(value + 1) это последнее, что было выполнено — тут и произошла ошибка.
  4. most recent call last — означает, что самый последний вызов будет отображаться последним в стеке (в нашем примере последним выполнился print(value + 1)).

В Python ошибку можно перехватить, обработать, и продолжить выполнение программы — для этого используется конструкция try ... except ....

Как обрабатывать исключения в Python (try except)

В Python исключения обрабатываются с помощью блоков try/except. Для этого операция, которая может вызвать исключение, помещается внутрь блока try. А код, который должен быть выполнен при возникновении ошибки, находится внутри except.

Например, вот как можно обработать ошибку деления на ноль:

try:
a = 7 / 0
except:
print('Ошибка! Деление на 0')

Здесь в блоке try находится код a = 7 / 0 — при попытке его выполнить возникнет исключение и выполнится код в блоке except (то есть будет выведено сообщение «Ошибка! Деление на 0»). После этого программа продолжит свое выполнение.

💭 PEP 8 рекомендует, по возможности, указывать конкретный тип исключения после ключевого слова except (чтобы перехватывать и обрабатывать конкретные исключения):

try:
a = 7 / 0
except ZeroDivisionError:
print('Ошибка! Деление на 0')

Однако если вы хотите перехватывать все исключения, которые сигнализируют об ошибках программы, используйте тип исключения Exception:

try:
a = 7 / 0
except Exception:
print('Любая ошибка!')

As — сохраняет ошибку в переменную

Перехваченная ошибка представляет собой объект класса, унаследованного от «BaseException». С помощью ключевого слова as можно записать этот объект в переменную, чтобы обратиться к нему внутри блока except:

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(e)

> [Errno 2] No such file or directory: 'ok123.txt'

В примере выше мы обращаемся к объекту класса «FileNotFoundError» (при выводе на экран через print отобразится строка с полным описанием ошибки).

У каждого объекта есть поля, к которым можно обращаться (например если нужно логировать ошибку в собственном формате):

import datetime

now = datetime.datetime.now().strftime("%d-%m-%Y %H:%M:%S")

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(f"{now} [FileNotFoundError]: {e.strerror}, filename: {e.filename}")

> 20-11-2021 18:42:01 [FileNotFoundError]: No such file or directory, filename: ok123.txt

Finally — выполняется всегда

При обработке исключений можно после блока try использовать блок finally. Он похож на блок except, но команды, написанные внутри него, выполняются обязательно. Если в блоке try не возникнет исключения, то блок finally выполнится так же, как и при наличии ошибки, и программа возобновит свою работу.

Обычно try/except используется для перехвата исключений и восстановления нормальной работы приложения, а try/finally для того, чтобы гарантировать выполнение определенных действий (например, для закрытия внешних ресурсов, таких как ранее открытые файлы).

В следующем примере откроем файл и обратимся к несуществующей строке:

file = open('ok.txt', 'r')

try:
lines = file.readlines()
print(lines[5])
finally:
file.close()
if file.closed:
print("файл закрыт!")

> файл закрыт!
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> print(lines[5])
> IndexError: list index out of range

Даже после исключения «IndexError», сработал код в секции finally, который закрыл файл.

p.s. данный пример создан для демонстрации, в реальном проекте для работы с файлами лучше использовать менеджер контекста with.

Также можно использовать одновременно три блока try/except/finally. В этом случае:

  • в try — код, который может вызвать исключения;
  • в except — код, который должен выполниться при возникновении исключения;
  • в finally — код, который должен выполниться в любом случае.

def sum(a, b):
res = 0

try:
res = a + b
except TypeError:
res = int(a) + int(b)
finally:
print(f"a = {a}, b = {b}, res = {res}")

sum(1, "2")

> a = 1, b = 2, res = 3

Else — выполняется когда исключение не было вызвано

Иногда нужно выполнить определенные действия, когда код внутри блока try не вызвал исключения. Для этого используется блок else.

Допустим нужно вывести результат деления двух чисел и обработать исключения в случае попытки деления на ноль:

b = int(input('b = '))
c = int(input('c = '))
try:
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
else:
print(f"a = {a}")

> b = 10
> c = 1
> a = 10.0

В этом случае, если пользователь присвоит переменной «с» ноль, то появится исключение и будет выведено сообщение «‘Ошибка! Деление на 0′», а код внутри блока else выполняться не будет. Если ошибки не будет, то на экране появятся результаты деления.

Несколько блоков except

В программе может возникнуть несколько исключений, например:

  1. Ошибка преобразования введенных значений к типу float («ValueError»);
  2. Деление на ноль («ZeroDivisionError»).

В Python, чтобы по-разному обрабатывать разные типы ошибок, создают несколько блоков except:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
except ValueError:
print('Число введено неверно')
else:
print(f"a = {a}")

> b = 10
> c = 0
> Ошибка! Деление на 0

> b = 10
> c = питон
> Число введено неверно

Теперь для разных типов ошибок есть свой обработчик.

Несколько типов исключений в одном блоке except

Можно также обрабатывать в одном блоке except сразу несколько исключений. Для этого они записываются в круглых скобках, через запятую сразу после ключевого слова except. Чтобы обработать сообщения «ZeroDivisionError» и «ValueError» в одном блоке записываем их следующим образом:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except (ZeroDivisionError, ValueError) as er:
print(er)
else:
print('a = ', a)

При этом переменной er присваивается объект того исключения, которое было вызвано. В результате на экран выводятся сведения о конкретной ошибке.

Raise — самостоятельный вызов исключений

Исключения можно генерировать самостоятельно — для этого нужно запустить оператор raise.

min = 100
if min > 10:
raise Exception('min must be less than 10')

> Traceback (most recent call last):
> File "test.py", line 3, in <module>
> raise Exception('min value must be less than 10')
> Exception: min must be less than 10

Перехватываются такие сообщения точно так же, как и остальные:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')

> Моя ошибка

Кроме того, ошибку можно обработать в блоке except и пробросить дальше (вверх по стеку) с помощью raise:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')
raise

> Моя ошибка
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> raise Exception('min must be less than 10')
> Exception: min must be less than 10

Как пропустить ошибку

Иногда ошибку обрабатывать не нужно. В этом случае ее можно пропустить с помощью pass:

try:
a = 7 / 0
except ZeroDivisionError:
pass

Исключения в lambda функциях

Обрабатывать исключения внутри lambda функций нельзя (так как lambda записывается в виде одного выражения). В этом случае нужно использовать именованную функцию.

20 типов встроенных исключений в Python

Иерархия классов для встроенных исключений в Python выглядит так:

BaseException
SystemExit
KeyboardInterrupt
GeneratorExit
Exception
ArithmeticError
AssertionError
...
...
...
ValueError
Warning

Все исключения в Python наследуются от базового BaseException:

  • SystemExit — системное исключение, вызываемое функцией sys.exit() во время выхода из приложения;
  • KeyboardInterrupt — возникает при завершении программы пользователем (чаще всего при нажатии клавиш Ctrl+C);
  • GeneratorExit — вызывается методом close объекта generator;
  • Exception — исключения, которые можно и нужно обрабатывать (предыдущие были системными и их трогать не рекомендуется).

От Exception наследуются:

1 StopIteration — вызывается функцией next в том случае если в итераторе закончились элементы;

2 ArithmeticError — ошибки, возникающие при вычислении, бывают следующие типы:

  • FloatingPointError — ошибки при выполнении вычислений с плавающей точкой (встречаются редко);
  • OverflowError — результат вычислений большой для текущего представления (не появляется при операциях с целыми числами, но может появиться в некоторых других случаях);
  • ZeroDivisionError — возникает при попытке деления на ноль.

3 AssertionError — выражение, используемое в функции assert неверно;

4 AttributeError — у объекта отсутствует нужный атрибут;

5 BufferError — операция, для выполнения которой требуется буфер, не выполнена;

6 EOFError — ошибка чтения из файла;

7 ImportError — ошибка импортирования модуля;

8 LookupError — неверный индекс, делится на два типа:

  • IndexError — индекс выходит за пределы диапазона элементов;
  • KeyError — индекс отсутствует (для словарей, множеств и подобных объектов);

9 MemoryError — память переполнена;

10 NameError — отсутствует переменная с данным именем;

11 OSError — исключения, генерируемые операционной системой:

  • ChildProcessError — ошибки, связанные с выполнением дочернего процесса;
  • ConnectionError — исключения связанные с подключениями (BrokenPipeError, ConnectionResetError, ConnectionRefusedError, ConnectionAbortedError);
  • FileExistsError — возникает при попытке создания уже существующего файла или директории;
  • FileNotFoundError — генерируется при попытке обращения к несуществующему файлу;
  • InterruptedError — возникает в том случае если системный вызов был прерван внешним сигналом;
  • IsADirectoryError — программа обращается к файлу, а это директория;
  • NotADirectoryError — приложение обращается к директории, а это файл;
  • PermissionError — прав доступа недостаточно для выполнения операции;
  • ProcessLookupError — процесс, к которому обращается приложение не запущен или отсутствует;
  • TimeoutError — время ожидания истекло;

12 ReferenceError — попытка доступа к объекту с помощью слабой ссылки, когда объект не существует;

13 RuntimeError — генерируется в случае, когда исключение не может быть классифицировано или не подпадает под любую другую категорию;

14 NotImplementedError — абстрактные методы класса нуждаются в переопределении;

15 SyntaxError — ошибка синтаксиса;

16 SystemError — сигнализирует о внутренне ошибке;

17 TypeError — операция не может быть выполнена с переменной этого типа;

18 ValueError — возникает когда в функцию передается объект правильного типа, но имеющий некорректное значение;

19 UnicodeError — исключение связанное с кодирование текста в unicode, бывает трех видов:

  • UnicodeEncodeError — ошибка кодирования;
  • UnicodeDecodeError — ошибка декодирования;
  • UnicodeTranslateError — ошибка перевода unicode.

20 Warning — предупреждение, некритическая ошибка.

💭 Посмотреть всю цепочку наследования конкретного типа исключения можно с помощью модуля inspect:

import inspect

print(inspect.getmro(TimeoutError))

> (<class 'TimeoutError'>, <class 'OSError'>, <class 'Exception'>, <class 'BaseException'>, <class 'object'>)

📄 Подробное описание всех классов встроенных исключений в Python смотрите в официальной документации.

Как создать свой тип Exception

В Python можно создавать свои исключения. При этом есть одно обязательное условие: они должны быть потомками класса Exception:

class MyError(Exception):
def __init__(self, text):
self.txt = text

try:
raise MyError('Моя ошибка')
except MyError as er:
print(er)

> Моя ошибка


С помощью try/except контролируются и обрабатываются ошибки в приложении. Это особенно актуально для критически важных частей программы, где любые «падения» недопустимы (или могут привести к негативным последствиям). Например, если программа работает как «демон», падение приведет к полной остановке её работы. Или, например, при временном сбое соединения с базой данных, программа также прервёт своё выполнение (хотя можно было отловить ошибку и попробовать соединиться в БД заново).

Вместе с try/except можно использовать дополнительные блоки. Если использовать все блоки описанные в статье, то код будет выглядеть так:

try:
# попробуем что-то сделать
except (ZeroDivisionError, ValueError) as e:
# обрабатываем исключения типа ZeroDivisionError или ValueError
except Exception as e:
# исключение не ZeroDivisionError и не ValueError
# поэтому обрабатываем исключение общего типа (унаследованное от Exception)
# сюда не сходят исключения типа GeneratorExit, KeyboardInterrupt, SystemExit
else:
# этот блок выполняется, если нет исключений
# если в этом блоке сделать return, он не будет вызван, пока не выполнился блок finally
finally:
# этот блок выполняется всегда, даже если нет исключений else будет проигнорирован
# если в этом блоке сделать return, то return в блоке

Подробнее о работе с исключениями в Python можно ознакомиться в официальной документации.

Сегодня мы узнаем об операторах continue и break в Python. Они нужны для изменения потока цикла.

Оператор continue в Python используется для перевода управления программой в начало цикла. Оператор continue пропускает оставшиеся строки кода внутри цикла и запускает следующую итерацию. В основном он  используется для определенного условия внутри цикла, чтобы мы могли пропустить конкретный код для определенного условия.

Синтаксис:

#loop statements  
continue
#the code to be skipped   

Диаграмма потока

Блок-схема Python continue

Рассмотрим следующие примеры.

Пример 1:

i = 0                   
while(i < 10):              
   i = i+1
   if(i == 5):
      continue
   print(i)

Выход:

1
2
3
4
6
7
8
9
10

Обратите внимание на вывод приведенного выше кода, значение 5 пропущено, потому что мы предоставили условие if с помощью оператора continue в цикле while. Когда он соответствует заданному условию, тогда управление передается в начало цикла while, и оно пропускает значение 5 из кода.

Давайте посмотрим на другой пример.

Пример 2:

str = "JavaTpoint"
for i in str:
    if(i == 'T'):
        continue
    print(i)

Выход:

J
a
v
a
p
o
i
n
t

Оператор pass

Оператор pass является нулевой операцией, поскольку при ее выполнении ничего не происходит. Он используется в тех случаях, когда оператор синтаксически необходим, но мы не хотим использовать на его месте какой-либо оператор.

Например, его можно использовать при переопределении метода родительского класса в подклассе, но не нужно указывать его конкретную реализацию в подклассе.

Pass также используется там, где код будет где-то написан, но еще не записан в программном файле.

Пример:

list = [1,2,3,4,5]  
flag = 0  
for i in list:  
    print("Current element:",i,end=" ");  
    if i==3:  
        pass  
        print("nWe are inside pass blockn");  
        flag = 1  
    if flag==1:  
        print("nCame out of passn");  
        flag=0 

Выход:

Current element: 1 Current element: 2 Current element: 3 
We are inside pass block


Came out of pass

Current element: 4 Current element: 5 

Мы узнаем больше об операторе pass в следующем руководстве.

Оператор break в Python

Break – это ключевое слово в Python, которое используется для вывода управления программой из цикла. Оператор break разрывает циклы один за другим, т. е. в случае вложенных циклов сначала прерывает внутренний цикл, а затем переходит к внешним циклам. Другими словами, мы можем сказать, что break используется для прерывания текущего выполнения программы, и управление переходит к следующей строке после цикла.

Break обычно используется в тех случаях, когда нужно разорвать цикл для заданного условия.

Синтаксис разрыва приведен ниже.

#loop statements
break; 

Пример 1:

list =[1,2,3,4]
count = 1;
for i in list:
    if i == 4:
        print("item matched")
        count = count + 1;
        break
print("found at",count,"location");

Выход:

item matched
found at 2 location

Пример 2:

str = "python"
for i in str:
    if i == 'o':
        break
    print(i);

Выход:

p
y
t
h

Пример 3: оператор break с циклом while.

i = 0;
while 1:
    print(i," ",end=""),
    i=i+1;
    if i == 10:
        break;
print("came out of while loop");

Выход:

0  1  2  3  4  5  6  7  8  9  came out of while loop

Пример 4:

n=2
while 1:
    i=1;
    while i<=10:
        print("%d X %d = %dn"%(n,i,n*i));
        i = i+1;
    choice = int(input("Do you want to continue printing the table, press 0 for no?"))
    if choice == 0:
        break;    
    n=n+1

Выход:

2 X 1 = 2

2 X 2 = 4

2 X 3 = 6

2 X 4 = 8

2 X 5 = 10

2 X 6 = 12

2 X 7 = 14

2 X 8 = 16

2 X 9 = 18

2 X 10 = 20

Do you want to continue printing the table, press 0 for no?1

3 X 1 = 3

3 X 2 = 6

3 X 3 = 9

3 X 4 = 12

3 X 5 = 15

3 X 6 = 18

3 X 7 = 21

3 X 8 = 24

3 X 9 = 27

3 X 10 = 30

Do you want to continue printing the table, press 0 for no?0

Изучаю Python вместе с вами, читаю, собираю и записываю информацию опытных программистов.

Обработка исключительных ситуаций (англ. exception handling) — механизм языков программирования, предназначенный для описания реакции программы на ошибки времени выполнения и другие возможные проблемы (исключения), которые могут возникнуть при выполнении программы и приводят к невозможности (бессмысленности) дальнейшей отработки программой её базового алгоритма. В русском языке также применяется более короткая форма термина: «обработка исключений».

Содержание

  • 1 Исключения
    • 1.1 Общее понятие исключительной ситуации
    • 1.2 Виды исключительных ситуаций
  • 2 Обработчики исключений
    • 2.1 Общее описание
    • 2.2 Неструктурная обработка исключений
    • 2.3 Структурная обработка исключений
    • 2.4 Блоки с гарантированным завершением
  • 3 Поддержка в различных языках
  • 4 Достоинства и недостатки
  • 5 Проверяемые исключения
    • 5.1 Некоторые проблемы простой обработки исключений
    • 5.2 Механизм проверяемых исключений
    • 5.3 Преимущества и недостатки
  • 6 См. также
  • 7 Ссылки

Исключения

Общее понятие исключительной ситуации

Во время выполнения программы могут возникать ситуации, когда состояние данных, устройств ввода-вывода или компьютерной системы в целом делает дальнейшие вычисления в соответствии с базовым алгоритмом невозможным или бессмысленными. Классические примеры подобных ситуаций:

  • Нулевое значение знаменателя при выполнении операции целочисленного деления. Результата у операции быть не может, поэтому ни дальнейшие вычисления, ни попытка использования результата деления не приведут к решению задачи.
  • Ошибка при попытке считать данные с внешнего устройства. Если данные не удаётся ввести, любые дальнейшие запланированные операции с ними бессмысленны.
  • Исчерпание доступной памяти. Если в какой-то момент система оказывается не в состоянии выделить достаточный для прикладной программы объём оперативной памяти, программа не сможет работать нормально.
  • Появление сигнала аварийного отключения электропитания системы. Прикладную задачу, по всей видимости, решить не удастся, в лучшем случае (при наличии какого-то резерва питания) прикладная программа может озаботиться сохранением данных.
  • Появление на входе коммуникационного канала данных, требующих немедленного считывания. Чем бы ни занималась в этот момент программа, она должна перейти к чтению данных, чтобы не потерять поступившую информацию.

Виды исключительных ситуаций

Исключительные ситуации, возникающие при работе программы, можно разделить на два основных типа: синхронные и асинхронные, принципы реакции на которые существенно различаются.

  • Синхронные исключения могут возникнуть только в определённых, заранее известных точках программы. Так, ошибка деления на нуль, ошибка чтения файла или коммуникационного канала — типичные синхронные исключения, так как возникают они только в операции целочисленного деления, чтения из файла или чтения из канала соответственно.
  • Асинхронные исключения могут возникать в любой момент времени и не зависят от того, какую конкретно инструкцию программы выполняет система. Типичные примеры таких исключений: аварийный отказ питания или поступление новых данных.

Обработчики исключений

Общее описание

В отсутствие собственного механизма обработки исключений для прикладных программ наиболее общей реакцией на любую исключительную ситуацию является немедленное прекращение выполнения с выдачей пользователю сообщения о характере исключения. Можно сказать, что в подобных случаях единственным и универсальным обработчиком исключений становится операционная система. Возможно игнорирование исключительной ситуации и продолжение работы, но такая тактика опасна, так как приводит к ошибочным результатам работы программ или возникновению ошибок впоследствии. Например, проигнорировав ошибку чтения из файла блока данных, программа получит в своё распоряжение не те данные, которые она должна была считать, а какие-то другие. Результаты их использования предугадать невозможно.

Обработка исключительных ситуаций самой программой заключается в том, что при возникновении исключительной ситуации, управление передаётся некоторому заранее определённому обработчику — блоку кода, процедуре, функции, которые выполняют необходимые действия.

Существует два принципиально разных механизма функционирования обработчиков исключений:

  • Обработка с возвратом подразумевает, что обработчик исключения ликвидирует возникшую проблему и приводит программу в состояние, когда она может работать дальше по основному алгоритму. В этом случае после того, как выполнится код обработчика, управление передаётся обратно в ту точку программы, где возникла исключительная ситуация (либо на команду, вызвавшую исключение, либо на следующую за ней, как в некоторых старых диалектах языка BASIC) и выполнение программы продолжается. Обработка с возвратом типична для обработчиков асинхронных исключений (которые обычно возникают по причинам, не связанным прямо с выполняемым кодом), для обработки синхронных исключений она малопригодна.
  • Обработка без возврата заключается в том, что после выполнения кода обработчика исключения управление передаётся в некоторое, заранее заданное место программы, и с него продолжается исполнение.

Существует два варианта подключения обработчика исключительных ситуаций к программе: структурная и неструктурная обработка исключений.

Неструктурная обработка исключений

Неструктурная обработка исключений реализуются в виде механизма регистрации функций или команд-обработчиков для каждого возможного типа исключения. Язык или системные библиотеки предоставляют программисту как минимум две стандартные процедуры: регистрации обработчика и разрегистрации обработчика. Вызов первой из них «привязывает» обработчик к определённому исключению, вызов второй — отменяет эту «привязку». Если исключение происходит, выполнение основного кода программы немедленно прерывается и начинается выполнение обработчика. По завершении обработчика управление передаётся либо в некоторую наперёд заданную точку программы, либо обратно в точку возникновения исключения (в зависимости от заданного способа обработки — с возвратом или без). Независимо от того, какая часть программы в данный момент выполняется, на определённое исключение всегда реагирует последний зарегистрированный для него обработчик. В некоторых языках зарегистрированный обработчик сохраняет силу только в пределах текущего блока кода (процедуры, функции), тогда процедура разрегистрации не требуется. Ниже показан условный фрагмент кода программы с неструктурной обработкой исключений:

 УстановитьОбработчик(ОшибкаБД, ПерейтиНа ОшБД) // На исключение "ОшибкаБД" установлен обработчик - команда "ПерейтиНа ОшБД"
 ... // Здесь находятся операторы работы с БД
 ПерейтиНа СнятьОшБД // Команда безусловного перехода - обход обработчика исключений
 ОшБД:  // метка - сюда произойдёт переход в случае ошибки БД по установленному обработчику
 ... // Обработчик исключения БД  
 СнятьОшБД:  // метка - сюда произойдёт переход, если контролируемый код выполнится без ошибки БД. 
 СнятьОбработчик(ОшибкаБД) // Обработчик снят

Неструктурная обработка — практически единственный вариант для обработки асинхронных исключений, но для синхронных исключений она неудобна: приходится часто вызывать команды установки/снятия обработчиков, всегда остаётся опасность нарушить логику работы программы, пропустив регистрацию или разрегистрацию обработчика.

Структурная обработка исключений

Структурная обработка исключений требует обязательной поддержки со стороны языка программирования — наличия специальных синтаксических конструкций. Такая конструкция содержит блок контролируемого кода и обработчик (обработчики) исключений. Наиболее общий вид такой конструкции (условный):

 НачалоБлока
 ... // Контролируемый код
 ...
 если (условие) то СоздатьИсключение Исключение2
 ...
 Обработчик Исключение1
 ... // Код обработчика для Исключения1
 Обработчик Исключение2
 ... // Код обработчика для Исключения2
 ОбработчикНеобработанных
 ... // Код обработки ранее не обработанных исключений
 КонецБлока

Здесь «НачалоБлока» и «КонецБлока» — ключевые слова, которые ограничивают блок контролируемого кода, а «Обработчик» — начало блока обработки соответствующего исключения. Если внутри блока, от начала до первого обработчика, произойдёт исключение, то произойдёт переход на обработчик, написанный для него, после чего весь блок завершится и исполнение будет продолжено со следующей за ним команды. «ОбработчикНеобработанных» — это обработчик исключений, которые не соответствуют ни одному из описанных выше в данном блоке. Обработчики исключений в реальности могут описываться по-разному (один обработчик на все исключения, по одному обработчику на одно исключение и так далее), но принципиально они работают одинаково: при возникновении исключения находится первый соответствующий ему обработчик в данном блоке, его код выполняется, после чего выполнение блока завершается. Исключения могут возникать как в результате программных ошибок, так и путём явной их генерации с помощью соответствующей команды (в примере — команда «СоздатьИсключение»). С точки зрения обработчиков такие искусственно созданные исключения ничем не отличаются от любых других.

Блоки обработки исключений могут многократно входить друг в друга, как явно (текстуально), так и неявно (например, в блоке вызывается процедура, которая сама имеет блок обработки исключений). Если ни один из обработчиков в текущем блоке не может обработать исключение, выполнение данного блока немедленно завершается, и управление передаётся на ближайший подходящий обработчик более высокого уровня иерархии. Это продолжается до тех пор, пока обработчик не найдётся и не обработает исключение.

Иногда бывает неудобно завершать обработку исключения в текущем блоке, то есть желательно, чтобы при возникновении исключения в текущем блоке обработчик выполнил какие-то действия, но исключение продолжило бы обрабатываться на более высоком уровне (обычно так бывает, когда обработчик данного блока не полностью обрабатывает исключение, а лишь частично). В таких случаях в обработчике исключений генерируется новое исключение или возобновляется с помощью специальной команды ранее появившееся. Код обработчиков не является защищённым в данном блоке, поэтому созданное в нём исключение будет обрабатываться в блоках более высокого уровня.

Блоки с гарантированным завершением

Помимо блоков контролируемого кода для обработки исключений, языки программирования могут поддерживать блоки с гарантированным завершением. Их использование оказывается удобным тогда, когда в некотором блоке кода, независимо от того, произошли ли какие-то ошибки, необходимо перед его завершением выполнить определённые действия. Простейший пример: если в процедуре динамически создаётся какой-то локальный объект в памяти, то перед выходом из этой процедуры объект должен быть уничтожен (чтобы избежать утечки памяти), независимо от того, произошли после его создания ошибки или нет. Такая возможность реализуется блоками кода вида:

 НачалоБлока
   ... // Основной код
 Завершение
   ... // Код завершения
 КонецБлока

Заключённые между ключевыми словами «НачалоБлока» и «Завершение» операторы (основной код) выполняются последовательно. Если при выполнении их не возникает исключений, то затем выполняются операторы между ключевыми словами «Завершение» и «КонецБлока» (код завершения). Если же при выполнении основного кода возникает исключение (любое), то сразу же выполняется код завершения, после чего весь блок завершается, а возникшее исключение продолжает существовать и распространяться до тех пор, пока его не перехватит какой-либо блок обработки исключений более высокого уровня.

Принципиальное отличие блока с гарантированным завершением — он не обрабатывает исключение, а лишь гарантирует выполнение определённого набора операций перед тем, как включится механизм обработки. Стоит заметить, что блок с гарантированным завершением легко реализуется с помощью команд «возбудить исключение» и «структурный обработчик исключения».

Поддержка в различных языках

Большинство современных языков программирования, такие как Ada, C++, D, Objective-C, JavaScript, Eiffel, Ruby, Common Lisp, PHP и все языки платформы .NET и др. имеют встроенную поддержку структурной обработки исключений. В этих языках при возникновении исключения, поддерживаемого языком, происходит раскрутка стека вызовов до первого обработчика исключений подходящего типа, и управление передаётся обработчику.

За исключением незначительных различий в синтаксисе, существует лишь пара вариантов обработки исключений. В наиболее распространённом из них исключительная ситуация генерируется специальным оператором (throw или raise), а само исключение, с точки зрения программы, представляет собой некоторый объект данных. То есть генерация исключения состоит из двух этапов: создания объекта-исключения и возбуждения исключительной ситуации с этим объектом в качестве параметра. При этом конструирование такого объекта само по себе выброса исключения не вызывает. В одних языках объектом-исключением может быть объект любого типа данных (в том числе строкой, числом, указателем и так далее), в других — только предопределённого типа-исключения (чаще всего он имеет имя Exception) и, возможно, его производных типов (типов-потомков, если язык поддерживает объектные возможности).

Область действия обработчиков начинается специальным ключевым словом try или просто языковым маркером начала блока (например, begin) и заканчивается перед описанием обработчиков (catch, except, resque). Обработчиков может быть несколько, один за одним, и каждый может указывать тип исключения, который он обрабатывает. Если язык поддерживает наследование и типы-исключения могут наследоваться друг от друга, то обработкой исключения занимается первый обработчик, совместимый с исключением по типу.

Некоторые языки также допускают специальный блок (else), который выполняется, если ни одного исключения не было сгенерировано в соответствующей области действия. Чаще встречается возможность гарантированного завершения блока кода (finally, ensure). Заметным исключением является Си++, где такой конструкции нет. Вместо неё используется автоматический вызов деструкторов объектов. Вместе с тем существуют нестандартные расширения Си++, поддерживающие и функциональность finally (например в MFC).

В целом, обработка исключений может выглядеть следующим образом (в некотором абстрактном языке):

try {
  line = console.readLine();
  if (line.length() == 0)
    throw new EmptyLineException("Строка, считанная с консоли, пустая!");
 
  console.printLine("Привет, %s!" % line);
}
catch (EmptyLineException exception) {
  console.printLine("Привет!");
}
catch (Exception exception) {
  console.printLine("Ошибка: " + exception.message());
}
else {
  console.printLine("Программа выполнилась без исключительных ситуаций");
}
finally {
  console.printLine("Программа завершается");
}

В некоторых языках может быть лишь один обработчик, который разбирается с различными типами исключений самостоятельно.

Достоинства и недостатки

Достоинства использования исключений особенно заметно проявляется при разработке библиотек процедур и программных компонентов, ориентированных на массовое использование. В таких случаях разработчик часто не знает, как именно должна обрабатываться исключительная ситуация (при написании универсальной процедуры чтения из файла невозможно заранее предусмотреть реакцию на ошибку, так как эта реакция зависит от использующей процедуру программы), но ему это и не нужно — достаточно сгенерировать исключение, обработчик которого предоставляется реализовать пользователю компонента или процедуры. Единственная альтернатива исключениям в таких случаях — возврат кодов ошибок, которые вынужденно передаются по цепочке между несколькими уровнями программы, пока не доберутся до места обработки, загромождая код и снижая его понятность.

Использование исключений в целях контроля ошибок повышает читаемость кода, так как позволяет отделить обработку ошибок от самого алгоритма, и облегчает программирование и использование компонентов других разработчиков.

Недостаток исключений — в том, что их поддержка снижает скорость работы программы. Поэтому в местах программы, критичных по скорости, не рекомендуют возбуждать и обрабатывать исключения, хотя следует отметить, что в реальности такие случаи крайне редки, во всяком случае, в прикладном программировании.

Также в сложных программах возникают большие «нагромождения» операторов try ... finally и try ... catch (try ... except).

Проверяемые исключения

Некоторые проблемы простой обработки исключений

Изначально (например, в C++), не существовало никакой формальной дисциплины описания, генерации и обработки исключений: любое исключение может быть возбуждено в любом месте программы, и если для него не находится обработчика в стеке вызовов, то выполнение программы прерывается аварийно. Если функция (особенно библиотечная) генерирует исключения, то для устойчивой работы использующая её программа должна перехватывать их все. Когда по какой-либо причине одно из возможных исключений оказывается необработанным, будет происходить неожиданное аварийное завершение программы. С подобными эффектами можно бороться организационными мерами, описывая возможные исключения, возникающие в библиотечных модулях, в соответствующей документации. Но при этом всегда остаётся возможность пропустить необходимый обработчик из-за случайной ошибки или несоответствия документации коду (что вовсе не редкость). Чтобы полностью исключить потерю обработки исключений, в обработчики приходится специально добавлять ветвь обработки «всех остальных» исключений (которая гарантированно перехватит любые, даже заранее неизвестные исключения), но такой выход не всегда оптимален.

Механизм проверяемых исключений

Позже в ряде языков, например, в Java, появились проверяемые исключения. Сущность этого механизма состоит в добавлении в язык следующих правил и ограничений:

  • в описании функции (или метода класса) в явном виде перечисляются все типы исключений, которые она может сгенерировать;
  • функция, использующая функцию или метод с объявленными исключениями, либо содержит обработчик этих исключений, либо обязана, в свою очередь, содержать их в своём описании;
  • компилятор проверяет наличие обработчиков и правильность списков исключений в описаниях функций и методов; если он обнаруживает возможность возникновения исключения, которое не описано в заголовке функции и не обрабатывается в ней, программа считается некорректной и не компилируется.

Преимущества и недостатки

Проверяемые исключения снижают количество ситуаций, когда исключение, которое могло быть обработано, вызвало критическую ошибку в программе, поскольку за наличием обработчиков следит компилятор. Это особенно полезно при изменениях кода, когда метод, который не мог ранее выбрасывать исключение типа X, начал это делать: компилятор автоматически отследит все случаи его использования и проверит наличие соответствующих обработчиков.

Другим полезным качеством проверяемых исключений является то, что они способствуют осмысленному написанию обработчиков: программист явно видит полный и правильный список исключений, которые могут возникнуть в данном месте программы, и может написать на каждое из них осмысленный обработчик вместо того, чтобы создавать «на всякий случай» общий обработчик всех исключений, одинаково реагирующий на все нештатные ситуации.

У проверяемых исключений есть и недостатки.

  • Они вынуждают создавать обработчики исключений, с которыми программист в принципе справиться не может, например ошибки ввода-вывода в веб-приложении. Это приводит к появлению «глупых» обработчиков, которые не делают ничего или дублируют системный обработчик критической ошибки (например, выводят стек вызова исключения) и, в итоге, только замусоривают код.
  • Cтановится невозможным добавление нового проверяемого исключения в метод, описанный в библиотеке, поскольку это нарушает обратную совместимость. (Это верно и для небиблиотечных методов, но в этом случае проблема менее существенна, так как весь код, в конечном итоге, доступен и может быть переработан).

Из-за перечисленных недостатков при обязательности использования проверяемых исключений этот механизм часто обходят. Например, многие библиотеки объявляют все методы как выбрасывающие некоторый суперкласс исключений (например, Exception), и только на этот тип исключения создаются обработчики. Однако результатом становится то, что компилятор заставляет писать обработчики исключений даже там, где они объективно не нужны. Более правильным подходом считается перехват внутри метода новых исключений, порождённых вызываемым кодом, а при необходимости передать исключение дальше — «заворачивание» его в исключение, уже возвращаемое методом. Например, если метод изменили так, что он начинает обращаться к базе данных вместо файловой системы, то он может сам ловить SQLException и выбрасывать вместо него вновь создаваемый IOException, указывая в качестве причины исходное исключение. Обычно рекомендуется изначально объявлять именно те исключения, которые придётся обрабатывать вызывающему коду. Скажем, если метод извлекает входные данные, то для него целесообразно объявить IOException, а если он оперирует SQL-запросами, то, вне зависимости от природы ошибки, он должен объявлять SQLException. В любом случае, набор выбрасываемых методом исключений должен тщательно продумываться. При необходимости имеет смысл создавать собственные классы исключений, наследуя их от Exception или других подходящих проверяемых исключений.

См. также

  • Код ошибки
  • Setjmp/longjmp

Ссылки

  • Обработка исключений в PHP

Wikimedia Foundation.
2010.

Нужно, чтобы при любой ошибке в любой из функций — выждать 5 сек и продолжить выполнение, не переходя на следующий цикл, с тем же ftid.
Сейчас, в случае ошибки, будет пропуск отработки функций с этим ftid.
Как сделать максимально правильно.

for ftid in range(begin_ftid, end_ftid):
        try:
           f1(ftid)
           f2(ftid)
           f3(ftid)
              
        except Exception:
            time.sleep(5)
            pass

задан 16 мая 2021 в 8:46

meim's user avatar

Простой вариант так сказать:

for ftid in range(10):
    b = True
    while b: #Повторять пока b = True
        try:
           f1(ftid)
           f2(ftid)
           f3(ftid)
           b = False # если все хорошо прерываем цикл while
        except Exception: # иначе выполнится исключение и b останется True
            time.sleep(1)
            pass

ответ дан 16 мая 2021 в 9:11

Kers's user avatar

KersKers

3,1462 золотых знака7 серебряных знаков16 бронзовых знаков

1

Для таких вещей есть удобные декораторы, например retry. Правда, придётся описать ещё одну функцию, чтобы использовать декоратор:

@retry(delay=5)
def f123(ftid):
    f1(ftid)
    f2(ftid)
    f3(ftid)

for ftid in range(begin_ftid, end_ftid):
    f123(ftid)

Таким образом, за счёт использования декоратора мы убрали из кода:

  • цикл while
  • try-except
  • time.sleep

Там есть довольно удобные настройки — например, можно увеличивать паузу между попытками, можно ограничить число попыток, ловить только определённые исключения, добавлять случайную задержку.

ответ дан 17 мая 2021 в 9:37

CrazyElf's user avatar

CrazyElfCrazyElf

62.2k5 золотых знаков19 серебряных знаков47 бронзовых знаков

Обработка ошибок времени выполнения

При обнаружении ошибки времени выполнения
Visual Basic выводит сообщение об ошибке и
приостанавливает выполнение программы.
Однако Visual Basic предоставляет пользователю
средства, с помощью которых он может
поручить программе выполнить перехват
ошибки и определить дальнейшие действия.
Обработка ошибок — это задание реакции
на ошибки, которые возникают во время
выполнения программы.

Обработка ошибок
производится в три этапа:

  • Подготовка
    перехвата
    .
    Выполняется с помощью оператора On
    Error
    . Оператор
    On Error
    активизирует режим обработки ошибок.
    Это означает, что при возникновении
    ошибки выполнения программа не
    прерывается и стандартное сообщение
    об ошибке не выводится. Оператор On
    Error
    осуществляет
    передачу управления на подпрограмму
    обработки ошибок, которая может выдавать
    сообщение и продолжать работу программы.
    Возможны три варианта синтаксиса
    оператора:

On Error GoTo метка

передача
управления на подпрограмму,
идентифицирующуюся меткой;

On Error Resume Next —

ошибка
игнорируется и управление передается
следующему оператору за тем, при
выполнении которого возникла ошибка;

On Error GoTo 0 —

отключает
предусмотренную пользователем
процедуру обработки ошибок и включает
стандартный механизм.

Для
перехвата всех возможных ошибок оператор
On Error должен
находится в начале процедуры.

  • Проверка
    и устранение ошибки.
    Это
    этап обработки ошибки, на котором
    возникшая ошибка анализируется, и
    выполняются соответствующие действия.
    Установить тип ошибки можно с помощью
    объекта Err.
    Свойства объекта Err
    позволяют
    получить следующую информацию о
    последней ошибке выполнения: свойство
    Number
    — номер
    возникшей ошибки;

свойство
Source
— имя
проекта, в котором возникла ошибка;

свойство
Description

строка с описанием ошибки;

свойство
HelpFile
— полное
имя файла справки.

После
того как обнаруженная ошибка обработана,
в процедуре нужно предусмотреть очистку
свойств объекта Err.
Очищает значения всех свойств объекта
Err метод
Clear.

Все
ошибки выполнения можно разделить на
две группы: ожидаемые, обработка которых
может быть предусмотрена заранее при
разработке программы и неожиданные.
Если ожидаемые ошибки известны заранее,
то целесообразно создать единый для
всех процедур модуля обработчик ошибок
в виде процедуры. Параметром такой
процедуры должен быть код ошибки.

  • Продолжение
    выполнения программы
    .
    Выполняется с помощью оператора Resume.
    Оператор Resume
    передает управление из обработчика
    ошибок в программу. Возможны следующие
    варианты синтаксиса оператора:

Resume [0] —

повторное
выполнение оператора, вызвавшего
ошибку;

Resume Next —

выполнение
следующего оператора за тем, при
выполнении которого возникла ошибка;

Resume метка —

выполнение
оператора, помеченного меткой.

Средства обнаружения логических ошибок

В
Visual Basic для обнаружения логических
ошибок имеются следующие средства
отладки программ:

  • точка
    останова
    .
    Точка останова — это специальная
    инструкция в процедуре, на которой
    работа процедуры приостанавливается;

  • трассировка
    процедур.
    Трассировка — это пошаговое (пооператорное)
    выполнение процедуры, позволяющее
    контролировать правильность выполнения
    алгоритма процедуры;

  • отслеживание
    в диалоговых окна Locals,
    Quick
    Watch
    и Watches
    значений
    переменных, выражений, свойств объектов
    ,
    возможность изменения этих значений
    в окне Watches.

В Visual Basic имеется
три режима работы с программой:

  • режим
    работы с текстом программы в редакторе
    кода;

  • режим выполнения,
    в котором текст программы не доступен
    для изменения, его можно только
    просматривать в окне редактора кода;

  • режим
    прерывания (режим отладки), когда
    осуществляется приостановка работы
    программы. Режим позволяет просматривать
    значения переменных, продолжать или
    прекращать работу программы, вносить
    изменения в текст программы.

Кнопки
команд, реализующих средства отладки
расположены на панели инструментов
Debug(отладка).
Команды отладки доступны также из меню
Debug.
Кроме этого выполнить эти команды можно
из контекстного меню вызванного в окне
редактора кода.

Панель
инструментов Debug:

Start/Continue

(Продолжить)

Запускает
программу или продолжает ее выполнение
после прерывания

Break

(Прервать)

Вызывает прерывание
программы в нужном месте

End

(Сброс)

Завершает выполнение программы

Togge Breakpoint

(Точка
останова)

Устанавливает
/ удаляет в текущей строке точку
останова

Step Into

(Шаг
с заходом)

Осуществляет
пошаговое выполнение процедуры с
трассировкой вызываемых ею процедур

Step Over

(Шаг
с обходом)

Осуществляет
пошаговое выполнение процедуры без
трассировки вызываемых ею процедур

Step Out

(Шаг
с выходом)

Выполняет
оставшуюся часть процедуры и
останавливается на следующим после
вызова процедуры операторе

Locals Window

(Окно
Locals)

Открывает
окно Locals
(локальные)
с текущими значениями всех локальных
переменных процедуры

Immediate Window

(Окно
Immediate)

Открывает
окно
Immediate
(непосредственное
выполнение), в котором можно выполнить
нужные операторы

Watch Window

(Окно
Watch)

Открывает
окно Watch
(наблюдение),
в котором можно просматривать текущие
значения переменных, выражений

Quick Watch

(Быстрый
просмотр)

Открывает
окно Quick
Watch
для
просмотра текущего значения выражения
или переменной, в момент останова
работы процедуры

Call Stack

(Стек
вызова)

В
режиме прерывания открывает диалоговое
окно Call
Stack
со
списком всех выполняемых процедур

Точка
останова.
Точки
останова устанавливаются в том случае
когда:

  • требуется остановить
    выполнения программы в нужном месте и
    проанализировать значение переменных;

  • нужно
    выполнить трассировку фрагмента
    процедуры, для проверки работы алгоритма
    (устанавливается две точки в начало и
    конец фрагмента процедуры) и т.д.

Установить
точку останова можно командой или
указателем мыши, щелкнув по полосе
индикатора. Полоса индикатора расположена
слева от текста процедуры в окне редактора
кода и выделена серым цветом. Для
отображения полосы индикатора следует
установить опцию Margin
Indicator Bar
на
вкладке Editor
Format
в окне
команды
ToolsOptions.

Установленные в
среде разработки точки останова не
сохраняются вместе с программой и не
включаются в exe-файл при его создании.

Удаление
точки останова осуществляется повторным
выполнением команды
Togge Breakpoint.
Несколько
точек останова модно удалить одновременно
командой Clear
All Breakpoints
меню
Debug.

Можно
остановить выполнение программы в
нужном месте, не используя точку останова.
Для этого следует установить курсор в
ту строку, до которой должна выполняться
программа, и выбрать команду Run
To Cursor
меню
Debug.

Трассировка
процедур.

Выполняется в режиме отладки программы
и позволяет наблюдать за результатами
выполнения каждой строки программы.
Является важным средством поиска ошибок
и отладки программ. Трассировку можно
выполнить с помощью команд
Step Into
, Step
Over
и Step Out.
Друг от друга команды отличаются
правилами работы с вызываемыми
процедурами.

Если
трассировка программы выполняется
командой Step
Into
(шаг с
заходом), то при выполнении оператора
вызова процедуры (функции) осуществляется
переход в процедуру (функцию) и последующее
выполнение команды Step
Into
приводит
к трассировке процедуры.

В
отличие от команды Step
Into
, команда
Step Over
(шаг с обходом)
выполняет вызов процедуры (функции)
как единичный оператор, те есть без
захода в процедуру (функцию).

В
том случае, когда требуется пошаговое
выполнение части процедуры до заданного
оператора, следует воспользоваться
двумя операторами Step
Into
и Step
Out
(шаг с
выходом).
До заданного оператора трассировка
должна выполняться командой Step
Into
. Когда
маркер помечает этот оператор, следует
выполнить командуй Step
Out.
Команда Step
Out
выполнить оставшуюся часть процедуры
и возвратиться в точку вызова.

Просмотр
значений.

Выполняется в режиме отладки и позволяет
контролировать значения переменных и
выражений в процессе выполнения
программы. Visual Basic предоставляет для
этого следующие средства:

  • Окно
    Data Tips.
    В окне Data
    Tips
    отображается
    значение той переменной, на которую
    установлен указатель мыши. Установить
    средство Auto
    Data Tips
    можно
    в окне команды ToolsOptions
    на вкладке Editor.

  • Окно
    Quick
    Watch.
    В окне Quick
    Watch
    можно также просмотреть значение одной
    выбранной переменной (курсор должен
    находится на имени переменной). Из окна
    Quick
    Watch
    можно выполнить добавление переменной
    в окно просмотра Watches
    (кнопка Add).
    Окно Quick
    Watch
    открывается командой Quick
    Watch
    меню Debug
    или кнопкой

    (Quick
    Watch)
    на панели Debug.

  • Окно
    Watches.
    В окне Wanches
    отображаются контролируемые выражения
    и их значения. Окно Wanches
    открывается кнопкой

    Watch
    Window
    панели Debug
    или командой Watch
    Window
    меню View.

Добавить
выражение в окно можно:

  • из
    окна команды Quick
    Watch
    кнопкой Add;

  • командой
    Add
    Watch
    меню Debug;

  • перетаскиванием
    выражения из окна редактора кода в окно
    Wanches.

  • Выражение
    в окне Wanches
    можно не только просматривать, но и
    редактировать. Можно изменить также и
    текущее значение выражения. Для этого
    достаточно в окне Wanches
    щелкнуть мышью на изменяемом выражении
    или значении.

  • Окно
    Locals.
    Это окно отображает все локальные
    переменные выполняемой процедуры и их
    значения в режиме отладки автоматически.
    Окно Locals
    открывается кнопкой

    Locals
    Window
    меню View.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Создание программного обеспечения — сложный процесс, осуществляемый коллективом специалистов (реже — одним человеком), а людям свойственно допускать ошибки (человеческий фактор). В связи с этим, код необходимо писать так, чтобы сводить возможные ошибки к минимуму, а также иметь возможность их эффективно определять, искать и обрабатывать, что является одним из признаков качественного программного обеспечения.

Содержание

  • Известные ошибки в ПО

    • 1962 г.: ракета Маринер-1

    • 1985 г.: аппарат лучевой терапии Therac-25

    • 1991 г.: ЗРК Patriot

    • 2000 г.: Проблема 2000 года (Y2K)

    • 2009-2011 г.: отзыв автомобилей Toyota

  • Определение и разновидности ошибок

    • Синтаксические ошибки

    • Логические (семантические) ошибки

    • Ошибки времени выполнения

    • Недокументированное поведение

  • Поиск ошибок и отладка программы

  • Подходы к обработке ошибок

  • Обработка исключений в Python

    • Понятия исключения

    • Конструкция try

    • Возбуждение исключений (raise)

    • Особенности обработки исключений внутри функций

    • Утверждения (assert)

    • Исключения или утверждения?

  • Рекомендации

7.1.1. Известные ошибки в ПО¶

История знает множество примеров, где программные ошибки стоили не только огромных денег, но и человеческих жизней 6 7:

7.1.1.1. 1962 г.: ракета Маринер-1¶

Маринер-1 — космический аппарат США для изучения Венеры (Рисунок 7.1.1).

_images/07_01_01.png

Рисунок 7.1.1 — Ракета Маринер-1 9

  • Описание и причина:

    Программист сделал ошибку, когда переводил рукописные математические формулы в код. Символ логического отрицания ¬ он принял за минус, и это привело к тому, что ракета воспринимала нормальные скорости как критические и из-за этого сбилась с курса.

  • Примерный ущерб / потери

    Никто не погиб, однако экономические потери составили 18,3 млн. долларов.

7.1.1.2. 1985 г.: аппарат лучевой терапии Therac-25¶

Therac-25 — канадский аппарат лучевой терапии (Рисунок 7.1.2).

_images/07_01_02.png

Рисунок 7.1.2 — Аппарат лучевой терапии `Therac-25 10

  • Описание и причина:

    Неисправность была вызвана тем, что в проекте использовались библиотеки с ошибками, входящие в состав ПО аппарата Therac-20, что и привело к фатальным последствиям. В коде была найдена довольно распространенная ошибка многопоточности, называемое состоянием гонки. Тем не менее ошибку не заметили, так как Therac-20 работал исправно из-за дополнительных (аппаратных) мер предосторожности.

  • Примерный ущерб / потери

    Умерло 2 человека, 4 получили серьезное облучение.

7.1.1.3. 1991 г.: ЗРК Patriot¶

Patriot — американский зенитный ракетный комплекс (Рисунок 7.1.3)

_images/07_01_03.png

Рисунок 7.1.3 — ЗРК Patriot 11

  • Описание и причина:

    Во время Войны в Персидском заливе по казармам подразделений США был нанесен ракетный удар иракскими ракетами типа Р-17 (советская баллистическая ракета). Ни одна из ракет не была перехвачена, и удар достиг цели.

    В программном обеспечении ЗРК, отвечающем за ведение и перехват цели, присутствовала ошибка, из-за которой со временем внутренние часы постепенно отходили от истинного значения времени: системное время хранилось как целое число в 24-битном регистре с точностью до 0,1 секунды; при итоговом расчете данные переводились в вещественное число.

    Проблема заключалась в том, что число (cfrac{1}{10}) не имеет точного представления в двоичной системе счисления:

    • (cfrac{1}{10}_{10} = 0,0001100110011001100110011001100…_{2});

    • (cfrac{1}{10}_{10} = 0,00011001100110011001100_{2}) (24-битное целое в системе Patriot);

    • ошибка 1 измерения: ~ (0,000000095_{10});

    • ошибка за 100 часов работы (0,000000095 cdot 10 cdot 60 cdot 60 cdot 100 = 0,34) с.;

    • ракета Р-17 летит со скоростью 1676 м/c, и проходит за 0,34 с. больше полукилометра.

    Данной ошибки в измерениях было достаточно, чтобы ракета преодолела радиус поражения Patriot (Рисунок 7.1.4, Видео 7.1.1).

    _images/07_01_04.png

    Рисунок 7.1.4 — Неправильное определение зоны пролета ракеты 12

    Видео 7.1.1 — Демонстрация ошибки ПО Patriot

  • Примерный ущерб / потери

    Погибло 28 американских солдат и еще двести получили ранения.

7.1.1.4. 2000 г.: Проблема 2000 года (Y2K)¶

  • Описание и причина:

    Разработчики программного обеспечения, выпущенного в XX веке, зачастую использовали два знака для представления года в датах: например, 1 января 1961 года представлялось как «01.01.61». При наступлении 1 января 2000 года при двузначном представлении года после 99 наступал 00 год (т.е. 99 + 1 = 00), что интерпретировалось многими старыми программами как 1900 год. Сложность была еще и в том, что многие программы обращались к вычислению дат вперед (например, при составлении плана закупок, планировании даты полета и т.д.) (Рисунок 7.1.5).

    _images/07_01_05.png

    Рисунок 7.1.5 — Табло показывает 3 января 1900 года, вместо 3 января 2000 года. Франция 13

  • Примерный ущерб / потери

    30-300 млрд. долларов.

7.1.1.5. 2009-2011 г.: отзыв автомобилей Toyota¶

  • Описание и причина:

    Неисправность в дроссельной заслонке (регулирует количество горючей смеси, поступающей в цилиндры двигателя внутреннего сгорания) с электронным контролем (ETC) приводила к случайным ускорениям автомобиля (Видео 7.1.2).

    Видео 7.1.2 — Случайное ускорение автомобиля

    В ходе десятимесячного расследования специалисты NASA выявили, что программное обеспечение не соответствует стандартам MISRA (англ. Motor Industry Software Reliability Association) и содержит 7134 нарушения. Представители Toyota ответили, что у них свои собственные стандарты.

    20 декабря 2010 года Тойота отвергнула обвинения, но выплатила 16 млрд. долларов в досудебном порядке по искам, выпустила обновление ПО для некоторых моделей машин и отозвала 5,5 млн. автомобилей 8 (Рисунок 7.1.6).

    _images/07_01_06.png

    Рисунок 7.1.6 — Lexus ES 350 2007-2010 — одна из моделей с неисправностью 14

  • Примерный ущерб / потери

    Погибло не менее 89 человек, многомиллиардные потери компании.

7.1.2. Определение и разновидности ошибок¶

Ошибка (также баг от англ. Software Bug) — неполадка в программе, из-за которой она ведет себя неопределенно, выдавая неожиданный результат.

Основные категории ошибок:

  • синтаксические;

  • логические;

  • ошибки времени выполнения;

  • недокументированное поведение.

7.1.2.1. Синтаксические ошибки¶

  • Причина:

    Несоответствие синтаксису языка программирования. Для компилируемых языков программирования синтаксическая ошибка не позволит выполнить компиляцию.

  • Пример:

    >>> for i in range(10)
      File "<stdin>", line 1
        for i in range(10)
                         ^
    SyntaxError: invalid syntax
    

7.1.2.2. Логические (семантические) ошибки¶

  • Причина:

    Несоответствие правильной логике работы программы.

  • Пример:

    >>> def avg_of_2(a, b):
    ...     return a + b / 2
    ...
    >>> avg_of_2(4, 8)  # Вернет 8 вместо 6
    

7.1.2.3. Ошибки времени выполнения¶

  • Причина:

    Любая неполадка, возникающая во время работы программы, например: целочисленное деление на ноль, ошибка при чтении файла, исчерпание доступной памяти и др.

  • Пример:

    >>> a = 5
    >>> b = 0
    >>> a / b
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ZeroDivisionError: division by zero
    

7.1.2.4. Недокументированное поведение¶

  • Причина:

    Серьезные ошибки, которые не проявляются при нормальном ходе выполнения программы, однако весьма опасны для безопасности всей системы в случае целенаправленной атаки.

  • Пример:

    Одним из наиболее известных примеров являются SQL-инъекции — внедрение в запрос произвольного SQL-кода.

    -- Код на сервере
    txtUserId = getRequestString("UserId");
    txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;
    
    -- "Стандартный" вызов на клиенте при UserId = 105 сформирует запрос
    SELECT * FROM Users WHERE UserId = 105
    
    -- Передача в качестве 'UserId' значения
    -- "105; DROP TABLE Suppliers" приведет к удалению таблицы 'Suppliers'
    SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers
    

Синтаксические и ошибки времени выполнения приводят к немедленному завершению (краху (англ. Crash)) выполнения программы в отличие от логических ошибок, после которых программа может продолжить работу. Пример краха программного обеспечения приведен на Видео 7.1.3.

Видео 7.1.3 — Презентация ОС Windows 98

7.1.3. Поиск ошибок и отладка программы¶

Поиск ошибок выполняется на этапе тестирования программного обеспечения, в процессе которого происходит обнаружение, локализация и устранение ошибок — или отладка. В процессе отладки происходит определение текущих значений переменных и путей выполнения программы, приведших к сбою.

Существуют две взаимодополняющие технологии отладки:

  • использование отладчиков: программ, которые включают в себя пользовательский интерфейс для пошагового выполнения программы: оператор за оператором, функция за функцией, с остановками на некоторых строках исходного кода или при достижении определенного условия (Рисунок 7.1.7);

    _images/07_01_07.png

    Рисунок 7.1.7 — Пример отладки в IDE PyCharm: выполнение «заморожено» на точке останова (англ. Breakpoint), при этом IDE отображает текущие значения переменных, дополнительные окна и параметры

  • вывод текущего состояния программы с помощью расположенных в критических точках программы операторов вывода — на экран, принтер, громкоговоритель или в файл. Вывод отладочных сведений в файл называется журналированием (также логгированием или аудитом) (Листинг 7.1.1).

    Листинг 7.1.1 — Пример отладочного вывода с использованием функции print() | скачать

    import random
    
    a = random.randint(1, 100)
    b = random.randint(1, 100)
    
    print(a, b)  # 44 97
    
    print(a**2 + b**2)  # 11345
    

7.1.4. Подходы к обработке ошибок¶

При написании кода необходимо предусматривать, что в определенном месте программы может возникнуть ошибка и дополнять код на случай ее возникновения.

Существует два ключевых подхода программирования реакции на возможные ошибки:

  1. «Семь раз отмерь, один раз отрежь» — LBYL (англ. Look Before You Leap);

    Суть подхода: прежде чем выполнить основное действие выполняются проверки — не получится ли деления на ноль, есть ли файл на диске и т.д.

  2. «Легче попросить прощения, чем разрешения» — EAFP (англ. «It’s Easier To Ask Forgiveness Than Permission»).

    Суть подхода: сначала выполняется основное действие, а затем, если возникнут, обрабатываются ошибки. Данный механизм поддерживается в различных языках программирования и называется обработкой исключений, а сама ошибочная ситуация — исключением.

В Листинге 7.1.2 приведен пример сравнения двух подходов.

Листинг 7.1.2 — Псевдокод функций, использующих разные подходы к обработке ошибок: «Семь раз отмерь, один раз отрежь» и «Легче попросить прощения, чем разрешения»

Обе функции возвращают решение линейного уравнения и НИЧЕГО, если 'a' = 0


ФУНКЦИЯ найти_корень_1(a, b):
    ЕСЛИ a не равно 0
        ВЕРНУТЬ -b / a
    ИНАЧЕ
        ВЕРНУТЬ НИЧЕГО


ФУНКЦИЯ найти_корень_2(a, b):
    ОПАСНЫЙ БЛОК КОДА      # Внутри данного блока пишется код, который
        ВЕРНУТЬ -b / a     # потенциально может привести к ошибкам
    ЕСЛИ ПРОИЗОШЛА ОШИБКА  # В случае деления на 0 попадаем сюда
        ВЕРНУТЬ НИЧЕГО

Подход «Семь раз отмерь, один раз отрежь» имеет определенные минусы:

  • проверки могут уменьшить читаемость и ясность основного кода;

  • код проверки может дублировать значительную часть работы, осуществляемой основным кодом;

  • разработчик может легко допустить ошибку, забыв какую-либо из проверок;

  • ситуация может изменится между моментом проверки и моментом выполнения операции.

В языках программирования, поддерживающих обработку исключений, рекомендуемым подходом к обработке ошибок является EAFP.

7.1.5. Обработка исключений в Python¶

7.1.5.1. Понятия исключения¶

При возникновении ошибки времени выполнения Python создает (возбуждает) специальный объект — исключение, который позволяет однозначно характеризовать возникшую ошибочную ситуацию. Выбор подходящего исключения происходит из встроенной иерархии классов-исключений (фрагмент):

  • BaseException (базовое исключение)

    • SystemExit (исключение, порождаемое функцией sys.exit() при выходе из программы)

    • KeyboardInterrupt (прерывании программы пользователем, Ctrl+C)

    • Exception (базовое несистемное исключение)

      • ArithmeticError (арифметическая ошибка)

        • FloatingPointError (неудачное выполнение операции с плавающей запятой)

        • OverflowError (результат арифметической операции слишком велик для представления)

        • ZeroDivisionError (деление на ноль)

      • LookupError (некорректный индекс или ключ)

        • IndexError (индекс не входит в диапазон элементов)

        • KeyError (несуществующий ключ)

      • MemoryError (недостаточно памяти)

      • NameError (не найдено переменной с таким именем)

      • OSError (ошибка, связанная с ОС — есть подклассы, например FileNotFoundError)

      • SyntaxError (синтаксическая ошибка, включает классы IndentationError и TabError)

      • SystemError (внутренняя ошибка)

      • TypeError (операция применена к объекту несоответствующего типа)

      • ValueError (аргумент правильного типа, но некорректного значения)

Пример встроенного возбуждения исключения:

>>> "я - строка" / 5
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'int'

7.1.5.2. Конструкция try

Придерживаясь идеологии «Легче попросить прощения, чем разрешения», Python предусматривает конструкцию try для обработки возникающих исключений.

try
except
else
finally
try:                              # (try строго 1)
    try_ suite                    # код, который может выполниться с ошибкой
except exception_group1 as var1:  # (except - 0 (если есть finally) и более)
    except_suite1                 # код, выполняемый в случае исключения 'exception_group1'
...                               # ссылка на исключение может быть записана в 'var1'
except exception_groupN as varN:
    except_suiteN                 # код, выполняемый в случае исключения 'exception_groupN'
...                               # except-блоков может быть произвольное кол-во
else:                             # (else - 0 или 1)
    else_suite                    # выполняется, если try не завершен преждевременно (например, break)
finally:                          # (finally - 0 или 1)
    finally_suite                 # код, который должен выполнится всегда (была ошибка выше или нет)

Ход выполнения:

  • код, который потенциально может привести к ошибке, помещается в блок try;

  • в случае ошибки, код немедленно завершается и переходит в обработчик except (если он указан для соответствующего исключения);

  • после поток выполнения переходит к else (если исключений не было) и finally (в любом случае).

На Рисунке 7.1.8 приведены общие варианты потока выполнения программы при обработке исключений.

_images/07_01_08.png

Рисунок 7.1.8 — Варианты потока выполнения программы при обработке исключений 4

Обработка исключений (и соответственно идеология «Легче попросить прощения, чем разрешения») — предпочитаемый способ в Python, а использование блоков зависит от конкретной ситуации.

Наиболее общий вариант обработки исключений приведен в Листинге 7.1.3.

Листинг 7.1.3 — Наиболее простой способ обработки исключений | скачать

try:
    x = int(input("Введите целое число x (для вычисления 1/x): "))
    res = 1 / x

    print("1/{} = {:.2f}".format(x, res))
except:
    print("Произошла ошибка!")

# --------------
# Примеры вывода:

# Введите целое число x (для вычисления 1/x): 3
# 1/3 = 0.33

# Введите целое число x (для вычисления 1/x): qwerty
# Произошла ошибка!

Подобный вариант обработки исключений не рекомендуется, т.к. блок except будет перехватывать любое исключение, что не позволит точно определить ошибку в коде. Улучшить код можно, добавив обработку исключения по классу (Листинг 7.1.4).

Листинг 7.1.4 — Обработка общего класса исключений Exception | скачать

try:
    x = int(input("Введите целое число x (для вычисления 1/x): "))
    res = 1 / x

    print("1/{} = {:.2f}".format(x, res))
except Exception as err:
    print("Произошла ошибка!")
    print("Тип:", type(err))
    print("Описание:", err)

# --------------
# Примеры вывода:

# Введите целое число x (для вычисления 1/x): 3
# 1/3 = 0.33

# Введите целое число x (для вычисления 1/x): 5.5
# Произошла ошибка!
# Тип: <class 'ValueError'>
# Описание: invalid literal for int() with base 10: '5.5'

Рекомендуемым способом обработки исключений является как можно большая конкретизация класса исключения (Листинг 7.1.5).

Листинг 7.1.5 — Обработка конкретных классов исключений | скачать

try:
    x = int(input("Введите целое число x (для вычисления 1/x): "))
    res = 1 / x

    print("1/{} = {:.2f}".format(x, res))
except ZeroDivisionError:
    print("На ноль делить нельзя!")
except ValueError as err:  # 'err' содержит ссылку на исключение
    print("Будьте внимательны:", err)
except (FileExistsError, FileNotFoundError):  # Исключения можно перечислять в виде кортежа
    print("Этого никогда не случится - мы не работаем с файлами")
except Exception as err:
    # Все, что не обработано выше и является потомком 'Exception',
    # будет обработано здесь
    print("Произошла ошибка!")
    print("Тип:", type(err))
    print("Описание:", err)

# --------------
# Примеры вывода:

# Введите целое число x (для вычисления 1/x): 3
# 1/3 = 0.33

# Введите целое число x (для вычисления 1/x): 0
# На ноль делить нельзя!

# Введите целое число x (для вычисления 1/x): qwerty
# Будьте внимательны: invalid literal for int() with base 10: 'qwerty'

7.1.5.3. Возбуждение исключений (raise

Исключения являются не только механизмом обработки ошибок, но и удобным средством управления потоком выполнения. Так, необходимое исключение можно возбудить вручную, когда это необходимо, используя конструкцию raise.

raise
raise exception(args)  # явное указание класса возбуждаемого исключения

# или

raise                  # 1) повторное возбуждение активного исключения (re-raise)
                       #    внутри блока except
                       # 2) 'TypeError' по умолчанию

Возбуждаемое исключение может быть как встроенным (если соответствует по смыслу), так и пользовательским (создаваемым самостоятельно).

В Листинге 7.1.6 приведен пример использование оператора raise.

Листинг 7.1.6 — Использование raise для управления потоком выполнения | скачать

MIN = 1
MAX = 10

try:
    x = int(input("Введите целое число от {} до {}: ".format(MIN, MAX)))

    if not MIN <= x <= MAX:
        # Возбудив исключение, его можно будет обработать в except
        # вместе с другими похожими исключениями
        raise ValueError("Число лежит вне интервала [{}; {}]!".format(MIN, MAX))

    print("Спасибо!")
except ValueError as err:  # 'err' содержит ссылку на исключение
    print("Будьте внимательны:", err)

# --------------
# Примеры вывода:

# Введите целое число от 1 до 10: 5
# Спасибо!

# Введите целое число от 1 до 10: 15
# Будьте внимательны: Число лежит вне интервала [1; 10]!

# Введите целое число от 1 до 10: qwerty
# Будьте внимательны: invalid literal for int() with base 10: 'qwerty'

7.1.5.4. Особенности обработки исключений внутри функций¶

Обработка исключений аналогично производится и внутри функций, однако, необходимо писать код так, чтобы вызывающий код знал о случившемся, если это влияет на его дальнейшую работу.

Разница в обработке исключений приведена в Листинге 7.1.7.

Листинг 7.1.7 — Различная обработка исключений в функции | скачать

# Ниже представлены 3 варианта обработки исключений в функциях
# Основное правило - обработка исключений внутри возможна и нужна, однако
#                    вызывающий код должен также знать о случившемся, если
#                    влияет на дальнейшую работу


def get_1_x(x):
    """Вернуть 1/x.

    Функция не обрабатывает исключения - ответственность на вызывающем коде.
    """
    return 1/x


def get_2_x(x):
    """Вернуть 2/x.

    Функция обрабатывает исключения, "затушив" ошибку - вызывающий код
    не будет знать, сработала функция правильно или нет.

    Данный способ использовать не рекомендуется!
    """
    try:
        return 2/x
    except Exception as e:
        print("Внутри произошла ошибка...", e)


def get_3_x(x):
    """Вернуть 3/x.

    Функция не только обрабатывает исключения, но перевозбуждает его:
    в результате вызывающий так же получает возникшее исключение.

    Внутренняя обработка исключений может быть полезна, если в целом результат
    функции не связан с внутренней ошибкой.
    """
    try:
        return 3/x
    except Exception as e:
        print("Внутри произошла ошибка...", e)
        raise

funcs = (get_1_x, get_2_x, get_3_x)
# Вызываем каждую функцию с "ошибочным" параметром
for func in funcs:
    try:
        print("-" * 50)
        print("Запущена функция:", func.__name__)
        print(func(0))
    except Exception as e:
        print("Произошла ошибка: {}.".format(e))

# -------------
# Пример вывода:

# --------------------------------------------------
# Запущена функция: get_1_x
# Произошла ошибка: division by zero.
# --------------------------------------------------
# Запущена функция: get_2_x
# Внутри произошла ошибка... division by zero
# None
# --------------------------------------------------
# Запущена функция: get_3_x
# Внутри произошла ошибка... division by zero
# Произошла ошибка: division by zero.

7.1.5.5. Утверждения (assert

Еще один способ, используемый для борьбы с ошибками — использование утверждений — специальных конструкций, выполняющих проверку произвольного условия на истинность.

В Python утверждения поддерживаются оператором assert.

assert
assert boolean_expression[, optional_expression]

# boolean_expression: логическое выражение для проверки
# optional_expression: необязательное сообщение (строка)

Если boolean_expression возвращает False, возбуждается исключение AssertionError с сообщением optional_expression (если задано).

Пример использования утверждений приведен в Листинге 7.1.8.

Листинг 7.1.8 — Использование утверждений в Python | скачать

# Использование оператора assert
# поможет отследить неверно реализованную функцию


def add_to_list(x, lst=[]):
    # Использование assert здесь оправдано - список всегда
    # подразумевается пустым
    assert len(lst) == 0, "Список должен быть пуст!"

    lst.append(x)
    return lst


print(add_to_list(1))
print(add_to_list(2))

# -------------
# Пример вывода:

# [1]
# Traceback (most recent call last):
#   File "07_01_08_a.py", line 15, in <module>
#     print(add_to_list(2))
#   File "07_01_08_a.py", line 8, in add_to_list
#     assert len(lst) == 0, "Список должен быть пуст!"
# AssertionError: Список должен быть пуст!

Примечание

В отличие от исключений утверждения являются отладочным инструментом и могут быть отключены при компиляции/интерпретации программы

7.1.5.6. Исключения или утверждения?¶

При выборе, использовать исключения или утверждения, придерживайтесь правил (Таблица 7.1.1).

Таблица 7.1.1 — Использовать исключения или утверждения?

Исключения

Утверждения

Обработка ошибок, которые могут произойти во время выполнения программы (неправильный ввод пользователя и т.п.)

Проверка ситуаций, которые предположительно не могут произойти

1

Проверка параметров общедоступных функций (исключения не могут быть отключены — проверка будет осуществлена всегда, а также класс исключения говорит о конкретном типе ошибки в отличие от утверждения)

Проверка предусловий, постусловий и инвариантов в необщедоступном коде (локальных функциях, внутреннем коде и т.д.)

2

Предоставление информации об ошибке пользователю

Предоставление информации об ошибке команде разработки

3

Восстановление из ошибочной ситуации (например, дальнейшая работа программы, если не удалось открыть файл)

Проверка невозможных ситуаций, свидетельствующих о серьезной ошибке в коде (например, выход за границы списка)

Примеры использования исключения и утверждений приведены в Листингах 7.1.9 (а-в).

Листинг 7.1.9 (а) — Использование исключений и утверждений в Python | скачать

# Исключения и утверждения могут проверять параметры функции,
# выступая в т.ч. более строгим вариантом документации


def fact(x):
    """Вернуть факториал 'x'.

    Не передавайте числа больше 15 во избежание переполнения памяти.
    """
    if x <= 1:
        return 1
    else:
        return x * fact(x-1)


def fact_save_1(x):
    assert x <= 15, 
        "Не передавайте числа больше 15 во избежание переполнения памяти"

    return fact(x)


def fact_save_2(x):
    if not x <= 15:
        raise ValueError("Не передавайте числа больше 15 во избежание "
                         "переполнения памяти")

    return fact(x)


print("{:>3} {:>20} {:>20}".format(*("x", "fact()", "fact_save()")))
for x in (5, 20):
    print("{:3}".format(x), end=" ")
    print("{:20}".format(fact(x)), end=" ")
    # print("{:20}".format(fact_save_1(x)))
    print("{:20}".format(fact_save_2(x)))

# -------------
# Пример вывода:

#   x               fact()          fact_save()
#   5                  120                  120
#  20  2432902008176640000 Traceback (most recent call last):
#   File "07_01_08_b.py", line 23, in <module>
#     print("{:20}".format(fact_save(x)))
#   File "07_01_08_b.py", line 15, in fact_save
#     assert x <= 15, "Не передавайте числа больше 15 во избежание переполнения памяти"
# AssertionError: Не передавайте числа больше 15 во избежание переполнения памяти
#
#   x               fact()          fact_save()
#   5                  120                  120
#  20  2432902008176640000 Traceback (most recent call last):
#   File "07_01_08_b.py", line 34, in <module>
#     print("{:20}".format(fact_save_2(x)))
#   File "07_01_08_b.py", line 24, in fact_save_2
#     raise ValueError("Не передавайте числа больше 15 во избежание "
# ValueError: Не передавайте числа больше 15 во избежание переполнения памяти

Листинг 7.1.9 (б) — Использование исключений и утверждений в Python | скачать

# Использование оператора assert для проверки входных и выходных данных


def make_call(accounts, account_id, mins, costs_per_min):
    """Списать со счета 'account' на 'value' баллов в случае звонка.

    Параметры:
        - accounts (dict): словарь со всеми счетами абонентов;
        - account_id (int): идентификатор абонента в словаре 'accounts';
        - mins (int): количество минут разговора;
        - costs_per_min (int): стоимость минуты разговора.
    """

    def get_costs(mins, costs_per_min):
        """Вернуть стоимость звонка.

        Параметры:
            - mins (int): количество минут разговора;
            - costs_per_min (int): стоимость минуты разговора.
        """
        return -mins * costs_per_min

    # Проверка типов
    assert isinstance(mins, int), "Параметр 'mins' имеет неверный тип!"
    assert isinstance(costs_per_min, (int, float)),
        "Параметр 'costs_per_min' имеет неверный тип!"

    # Проверка значений
    assert mins > 0, "Параметр 'mins' должен быть > 0"
    assert costs_per_min >= 0, "Параметр 'costs' должен быть >= 0"

    # Расчет (стоимость звонка не должна быть меньше 0)
    costs_total = get_costs(mins, costs_per_min)
    assert costs_total >= 0,
        "Расчет стоимости звонка был осуществлен неверно!"
    accounts[account_id] -= costs_total


# Словарь ID=Баланс
accounts = {"Василий Иванов": 100}
print(accounts)

try:
    make_call(accounts, "Василий Иванов", mins=4, costs_per_min=2)
except Exception as e:
    print("Во время списывания стоимости звонка произошла ошибка:", e)

print(accounts)

Листинг 7.1.9 (в) — Использование исключений и утверждений в Python | скачать

# Совместное использование исключений и утверждений

weekday_names = {
    1: "Понедельник",
    2: "Вторник",
    3: "Среда",
    4: "Четверг",
    5: "Пятница",
    6: "Суббота",
    7: "Воскресенье"
}


def weekday_name(weekday):
    """Вернуть название дня недели. Нумерация с 1.

    Параметры:
        weekday (int): номер дня недели.

    Исключения:
        - TypeError: 'weekday' не int;
        - ValueError: 'weekday' не число от 1 до 7.

    Результат:
        str: название дня недели.
    """
    # "Невозможная" ситуация - словарь 'weekday_names' может быть
    # "испорчен" - проверяется с помощью assert.
    assert weekday_names is not None and isinstance(weekday_names, dict), 
        "Внутренняя ошибка программы. Обратитесь в разрабочику."

    # Параметры функции проверяются с помощью исключений
    if not isinstance(weekday, int):
        raise TypeError("Параметр 'weekday' должен быть типа 'int'.")
    if weekday not in weekday_names:
        raise ValueError("Параметр 'weekday' должен быть целым числом "
                         "от 1 до 7.")

    return weekday_names[weekday]


# Блок try используется в любом случае т.к. может возникнуть ошибка
# независимо от того, используется пользовательский ввод,
# чтение данных из какого-либо источника или просто вызов функции

while True:
    try:
        weekday = int(input("Введите номер дня недели (1-7): "))

        # if not 1 <= weekday <= 7:
        #     raise ValueError("Номер дня недели должен быть целым числом "
        #                      "от 1 до 7.")

        # Раскомментируйте код ниже, чтобы получить срабатывание assert
        # weekday_names = None

        print("Это -", weekday_name(weekday))

        break
    except TypeError as err:
        print("Проверьте, что введено целое число.")
    except ValueError as err:
        print("Проверьте, что введено целое число, и оно "
              "находится в допустимых границах.")
    except Exception as err:
        print("Ошибка при определении названия дня недели.")
        print(err)  # Запись в лог информации об ошибке

7.1.6. Рекомендации¶

Программный код должен быть написан с учетом того, что в любом его месте может возникнуть ошибка, для чего необходимо эффективно использовать соответствующие средства языка программирования:

  • код, который потенциально может привести к ошибкам, должен быть помещен в блок try;

  • блок except должен:

    • обрабатывать исключения максимально конкретно (указывать конкретные классы); стоит определять свои классы исключений, когда это это имеет смысл;

    • категорически не следует «тушить» исключения (писать пустой или бессмысленный except);

    • в блоках except следует снова возбуждать исключения (raise), которые не обрабатываются явно, передавая обработку в участок кода, который должен определять дальнейшие действия программы;

  • блок finally следует использовать для освобождения ресурсов (это может быть закрытие файла или сетевого соединения), независимо от того, прошла операция успешно или нет.


1

Sebesta, W.S Concepts of Programming languages. 10E; ISBN 978-0133943023.

2

Python — официальный сайт. URL: https://www.python.org/.

3

Python — FAQ. URL: https://docs.python.org/3/faq/programming.html.

4

Саммерфилд М. Программирование на Python 3. Подробное руководство. — М.: Символ-Плюс, 2009. — 608 с.: ISBN: 978-5-93286-161-5.

5

Лучано Рамальо. Python. К вершинам мастерства. — М.: ДМК Пресс , 2016. — 768 с.: ISBN: 978-5-97060-384-0, 978-1-491-94600-8.

6

5 худших багов в истории. URL: https://tproger.ru/articles/5-worst-bugs-in-history/.

7

List of software bugs. URL: https://en.wikipedia.org/wiki/List_of_software_bugs.

8

Toyota: 81 514 нарушений в коде. URL: https://habrahabr.ru/company/pvs-studio/blog/310862/.

9

Mariner-1. URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%B8%D0%BD%D0%B5%D1%80-1#/media/File:Atlas_Agena_with_Mariner_1.jpg.

10

Therac-25. URL: https://upload.wikimedia.org/wikipedia/commons/b/bd/Clinac_2rtg.jpg.

11

ЗРК Patriot. URL: http://vpk.name/file/img/Patriot_antimissile.t.jpg.

12

Incorrectly Calculated Range Gate. URL: https://hsto.org/files/853/04a/1dc/85304a1dc1b6499d94d5394436e42faf.jpg.

13

Табло показывает 3 января 1900 года, вместо 3 января 2000 года. Франция. URL: https://upload.wikimedia.org/wikipedia/commons/f/fb/Bug_de_l%27an_2000.jpg.

14

MY 2007–2010 Lexus ES 350. URL: http://pictures.topspeed.com/IMG/crop/201108/lexus-es-350-6_1600x0w.jpg.

Исключения в программировании (exceptions) — это механизм, который позволяет программе обрабатывать нетипичную ситуацию и при этом не прекращать работу. Благодаря этому механизму разработчик может описать в коде реакцию программы на такие ситуации.

Простой пример: в программе-калькуляторе исключением может стать ситуация, когда пользователь решит поделить на ноль. Это не должно стать ошибкой, из-за которой рушится вся программа, но чтобы ситуация не застопорила исполнение остального кода, нужно ее правильно обработать. Для этого необходимы обработчики исключений. Они позволяют «сказать» программе, что ей делать, если такое случится.

Механизм обработки исключений существует в большинстве языков программирования. Он может быть реализован немного по-разному, но общая суть схожа: это всегда какие-то особые случаи, которые надо обработать отдельно. Мы при описании будем отталкиваться от особенностей исключений в Java, но встретить их можно и в других языках: JavaScript, PHP, Python, C++ и так далее.

Механизм обработки исключений может понадобиться любому разработчику. Если не отслеживать исключительные ситуации, может возникнуть незаметная ошибка, которая нарушит работу всего кода, или программа может «зависнуть» либо «упасть» — потому что сложный момент не был обработан как надо.

Работа без исключений

Исключения нужны, чтобы программа продолжала относительно корректно работать, даже если что-то пошло не так.

Работа с исключениями

Исключения делятся на две большие группы, которые пересекаются друг с другом: синхронные и асинхронные. Синхронные могут возникнуть только в конкретном месте программы или при выполнении определенной операции: открытие файла, деление и так далее. Асинхронные могут возникнуть когда и где угодно. Их «ловят» по-разному, чтобы успешно отслеживать и те, и другие.

Мы сказали, что эти группы пересекаются друг с другом, хотя по логике они противоположны. Пересечение происходит потому, что при выполнении операций асинхронным может стать даже формально синхронное исключение, и наоборот.

  • Разработчик пишет код и понимает, что в какой-то момент в том или ином месте может возникнуть нештатная ситуация. Бывает, что исключения добавляют в уже написанный код — например, нештатную ситуацию обнаружили при тестировании.
  • В этом месте пишется особый блок кода — обработчик. Он говорит программе: здесь может возникнуть особая ситуация, если она случится, выполни вот это.
  • Внутри обработчика — функция, которая выполнится, если программа столкнется с описанной ситуацией. Она или исправит ситуацию, или скорректирует дальнейшее выполнение программы.

Бывают исключения, которые нельзя предусмотреть. Разработчики обрабатывают не все возможные нештатные ситуации, а только самые очевидные, чтобы не перегружать код. Это справедливо для большинства сфер разработки, кроме тех, где слишком высока цена ошибки.

Существуют разные виды обработки: структурная и неструктурная, с возвратом и без возврата. Они различаются механизмом действия, но общая суть одна: это функция, которая запускается, если в коде случилась та или иная исключительная ситуация. Тут можно использовать условный оператор if или специальные синтаксические конструкции.

В примере с делением на ноль обработчик может отменить попытку деления и сказать пользователю, что на ноль делить нельзя, — но это самый простой пример. В реальности все сложнее.

Обработка с возвратом и без возврата. Эти виды обработки различаются реакцией на случившееся исключение. Версия с возвратом предполагает, что обработчик попытается разрешить проблему, а когда ему это удастся, вернет программу к исходному поведению. В итоге она будет работать так, как если бы исключения не возникало.

Вот пример: не запустился скрипт, необходимый для работы следующего скрипта. Следующий скрипт заметил это, зафиксировал исключение и обратился к обработчику, который запустил нужный скрипт «вручную». После этого все может работать, как и было задумано.

Обработка без возврата — вид обработки, когда проблема не ликвидируется, а участок кода, который не получается выполнить, пропускается. В примере со скриптами обработка «переключила» бы выполнение кода на момент, где уже не понадобится незаработавший скрипт.

Структурная и неструктурная обработка. Это два способа подключить обработчики. В первом случае они встраиваются в код, а когда генерируется исключение, для него выбирается тот или иной обработчик в зависимости от ситуации. Во втором случае обработчики существуют отдельно и «подключаются» к конкретным видам исключений с помощью специальных команд. Способ выбирается в зависимости от вида исключения, особенностей кода и языка.

Обычно асинхронные исключения обрабатывают неструктурно, а синхронные — структурно.

Гарантированное завершение. Так называется отдельный вид функции, которая обычно пишется после обработчика. Она описывает действия, которые должны произойти в этой части кода вне зависимости от того, произошло исключение или нет.

Кроме исключений, в языках программирования существует механизм обработки ошибок. Их часто путают, особенно новички. И то, и другое подразумевает нетипичную ситуацию, в которой работу программы нельзя продолжить корректно. Но есть и различия:

  • ошибка означает, что программа «упала», что ее работу нельзя продолжить и она должна быть завершена. Ошибку невозможно исправить — только сообщить о ней пользователю, записать в лог и прекратить исполнение кода;
  • исключение — это нештатная ситуация, которую тем не менее можно попробовать починить «на ходу», не закрывая программу. В этом есть смысл, в отличие от ситуации с ошибкой.

Это действительно похожие понятия. В Java, например, сущности исключений и ошибок наследуются от общего предка — интерфейса Throwable. Но ошибка — это явление, когда что-то сделать принципиально не получается. А исключение — ситуация, когда программа просто не знает, что делать, если не указать на это дополнительно.

Можно провести аналогию. Мама послала дочь в магазин за покупками и сказала ей купить батон хлеба. Если хлеба в магазине не оказалось, девочка не сможет его купить. Это ошибка. А если в магазине есть три вида батонов, или все батоны вчерашние, а девочка не знает, нужен ли маме только свежий хлеб, или батон есть, но только из ржаной муки, — это исключения.

В первом случае дочь просто вернется домой и ничего не купит. Из-за ошибки программа не выполняется. Во втором случае девочка позвонит маме и спросит, что ей делать. Программа передаст управление обработчику, чтобы тот разрешил сложную ситуацию.

В некоторых случаях разработчики описывают все нештатные ситуации как исключения. Например, при создании новых библиотек, которые должны быть очень гибкими и подразумевать многие ситуации — то, что критично для одной задачи, окажется поправимым в другой. Но это редкие случаи, и чаще приходится выбирать между обработкой ошибки и исключения.

Обработчики ошибок советуют использовать тогда, когда проблема не решаема изнутри программы. Например, у приложения нет связи с сервером — оно не может продолжать работу без этого. Или какие-то критичные файлы оказались повреждены, и из-за этого код просто нельзя исполнить. Или в системе закончилась свободная память. Это никак не поправить программными способами.

Исключениями стоит пользоваться, если возникла нештатная, неправильная ситуация, которую не подразумевает логика работы программы. Но программу при этом не нужно выключать и завершать — надо исправить или «перескочить» проблемный момент и сохранить все остальное.

В большинстве языков механизм обработки исключений есть по умолчанию — это популярная функция. Но приступать к работе с ними рекомендуют после изучения базовых возможностей языка. Мы советуем идти от простого к сложному: начать с основ и затем переходить к комплексным темам. Конкретно обработка исключений обычно изучается перед тем, как человек переходит к практическим проектам, потому что любая более-менее сложная программа может столкнуться с исключениями в ходе работы.

Содержание:развернуть

  • Как устроен механизм исключений
  • Как обрабатывать исключения в Python (try except)
  • As — сохраняет ошибку в переменную

  • Finally — выполняется всегда

  • Else — выполняется когда исключение не было вызвано

  • Несколько блоков except

  • Несколько типов исключений в одном блоке except

  • Raise — самостоятельный вызов исключений

  • Как пропустить ошибку

  • Исключения в lambda функциях
  • 20 типов встроенных исключений в Python
  • Как создать свой тип Exception

Программа, написанная на языке Python, останавливается сразу как обнаружит ошибку. Ошибки могут быть (как минимум) двух типов:

  • Синтаксические ошибки — возникают, когда написанное выражение не соответствует правилам языка (например, написана лишняя скобка);
  • Исключения — возникают во время выполнения программы (например, при делении на ноль).

Синтаксические ошибки исправить просто (если вы используете IDE, он их подсветит). А вот с исключениями всё немного сложнее — не всегда при написании программы можно сказать возникнет или нет в данном месте исключение. Чтобы приложение продолжило работу при возникновении проблем, такие ошибки нужно перехватывать и обрабатывать с помощью блока try/except.

Как устроен механизм исключений

В Python есть встроенные исключения, которые появляются после того как приложение находит ошибку. В этом случае текущий процесс временно приостанавливается и передает ошибку на уровень вверх до тех пор, пока она не будет обработано. Если ошибка не будет обработана, программа прекратит свою работу (а в консоли мы увидим Traceback с подробным описанием ошибки).

💁‍♂️ Пример: напишем скрипт, в котором функция ожидает число, а мы передаём сроку (это вызовет исключение «TypeError»):

def b(value):
print("-> b")
print(value + 1) # ошибка тут

def a(value):
print("-> a")
b(value)

a("10")

> -> a
> -> b
> Traceback (most recent call last):
> File "test.py", line 11, in <module>
> a("10")
> File "test.py", line 8, in a
> b(value)
> File "test.py", line 3, in b
> print(value + 1)
> TypeError: can only concatenate str (not "int") to str

В данном примере мы запускаем файл «test.py» (через консоль). Вызывается функция «a«, внутри которой вызывается функция «b«. Все работает хорошо до сточки print(value + 1). Тут интерпретатор понимает, что нельзя конкатенировать строку с числом, останавливает выполнение программы и вызывает исключение «TypeError».

Далее ошибка передается по цепочке в обратном направлении: «b» → «a» → «test.py«. Так как в данном примере мы не позаботились обработать эту ошибку, вся информация по ошибке отобразится в консоли в виде Traceback.

Traceback (трассировка) — это отчёт, содержащий вызовы функций, выполненные в определенный момент. Трассировка помогает узнать, что пошло не так и в каком месте это произошло.

Traceback лучше читать снизу вверх ↑

Пример Traceback в Python

В нашем примере Traceback содержится следующую информацию (читаем снизу вверх):

  1. TypeError — тип ошибки (означает, что операция не может быть выполнена с переменной этого типа);
  2. can only concatenate str (not "int") to str — подробное описание ошибки (конкатенировать можно только строку со строкой);
  3. Стек вызова функций (1-я линия — место, 2-я линия — код). В нашем примере видно, что в файле «test.py» на 11-й линии был вызов функции «a» со строковым аргументом «10». Далее был вызов функции «b». print(value + 1) это последнее, что было выполнено — тут и произошла ошибка.
  4. most recent call last — означает, что самый последний вызов будет отображаться последним в стеке (в нашем примере последним выполнился print(value + 1)).

В Python ошибку можно перехватить, обработать, и продолжить выполнение программы — для этого используется конструкция try ... except ....

Как обрабатывать исключения в Python (try except)

В Python исключения обрабатываются с помощью блоков try/except. Для этого операция, которая может вызвать исключение, помещается внутрь блока try. А код, который должен быть выполнен при возникновении ошибки, находится внутри except.

Например, вот как можно обработать ошибку деления на ноль:

try:
a = 7 / 0
except:
print('Ошибка! Деление на 0')

Здесь в блоке try находится код a = 7 / 0 — при попытке его выполнить возникнет исключение и выполнится код в блоке except (то есть будет выведено сообщение «Ошибка! Деление на 0»). После этого программа продолжит свое выполнение.

💭 PEP 8 рекомендует, по возможности, указывать конкретный тип исключения после ключевого слова except (чтобы перехватывать и обрабатывать конкретные исключения):

try:
a = 7 / 0
except ZeroDivisionError:
print('Ошибка! Деление на 0')

Однако если вы хотите перехватывать все исключения, которые сигнализируют об ошибках программы, используйте тип исключения Exception:

try:
a = 7 / 0
except Exception:
print('Любая ошибка!')

As — сохраняет ошибку в переменную

Перехваченная ошибка представляет собой объект класса, унаследованного от «BaseException». С помощью ключевого слова as можно записать этот объект в переменную, чтобы обратиться к нему внутри блока except:

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(e)


> [Errno 2] No such file or directory: 'ok123.txt'

В примере выше мы обращаемся к объекту класса «FileNotFoundError» (при выводе на экран через print отобразится строка с полным описанием ошибки).

У каждого объекта есть поля, к которым можно обращаться (например если нужно логировать ошибку в собственном формате):

import datetime

now = datetime.datetime.now().strftime("%d-%m-%Y %H:%M:%S")

try:
file = open('ok123.txt', 'r')
except FileNotFoundError as e:
print(f"{now} [FileNotFoundError]: {e.strerror}, filename: {e.filename}")

> 20-11-2021 18:42:01 [FileNotFoundError]: No such file or directory, filename: ok123.txt

Finally — выполняется всегда

При обработке исключений можно после блока try использовать блок finally. Он похож на блок except, но команды, написанные внутри него, выполняются обязательно. Если в блоке try не возникнет исключения, то блок finally выполнится так же, как и при наличии ошибки, и программа возобновит свою работу.

Обычно try/except используется для перехвата исключений и восстановления нормальной работы приложения, а try/finally для того, чтобы гарантировать выполнение определенных действий (например, для закрытия внешних ресурсов, таких как ранее открытые файлы).

В следующем примере откроем файл и обратимся к несуществующей строке:

file = open('ok.txt', 'r')

try:
lines = file.readlines()
print(lines[5])
finally:
file.close()
if file.closed:
print("файл закрыт!")

> файл закрыт!
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> print(lines[5])
> IndexError: list index out of range

Даже после исключения «IndexError», сработал код в секции finally, который закрыл файл.

p.s. данный пример создан для демонстрации, в реальном проекте для работы с файлами лучше использовать менеджер контекста with.

Также можно использовать одновременно три блока try/except/finally. В этом случае:

  • в try — код, который может вызвать исключения;
  • в except — код, который должен выполниться при возникновении исключения;
  • в finally — код, который должен выполниться в любом случае.

def sum(a, b):
res = 0

try:
res = a + b
except TypeError:
res = int(a) + int(b)
finally:
print(f"a = {a}, b = {b}, res = {res}")

sum(1, "2")

> a = 1, b = 2, res = 3

Else — выполняется когда исключение не было вызвано

Иногда нужно выполнить определенные действия, когда код внутри блока try не вызвал исключения. Для этого используется блок else.

Допустим нужно вывести результат деления двух чисел и обработать исключения в случае попытки деления на ноль:

b = int(input('b = '))
c = int(input('c = '))
try:
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
else:
print(f"a = {a}")


> b = 10
> c = 1
> a = 10.0

В этом случае, если пользователь присвоит переменной «с» ноль, то появится исключение и будет выведено сообщение «‘Ошибка! Деление на 0′», а код внутри блока else выполняться не будет. Если ошибки не будет, то на экране появятся результаты деления.

Несколько блоков except

В программе может возникнуть несколько исключений, например:

  1. Ошибка преобразования введенных значений к типу float («ValueError»);
  2. Деление на ноль («ZeroDivisionError»).

В Python, чтобы по-разному обрабатывать разные типы ошибок, создают несколько блоков except:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except ZeroDivisionError:
print('Ошибка! Деление на 0')
except ValueError:
print('Число введено неверно')
else:
print(f"a = {a}")

> b = 10
> c = 0
> Ошибка! Деление на 0

> b = 10
> c = питон
> Число введено неверно

Теперь для разных типов ошибок есть свой обработчик.

Несколько типов исключений в одном блоке except

Можно также обрабатывать в одном блоке except сразу несколько исключений. Для этого они записываются в круглых скобках, через запятую сразу после ключевого слова except. Чтобы обработать сообщения «ZeroDivisionError» и «ValueError» в одном блоке записываем их следующим образом:

try:
b = float(input('b = '))
c = float(input('c = '))
a = b / c
except (ZeroDivisionError, ValueError) as er:
print(er)
else:
print('a = ', a)

При этом переменной er присваивается объект того исключения, которое было вызвано. В результате на экран выводятся сведения о конкретной ошибке.

Raise — самостоятельный вызов исключений

Исключения можно генерировать самостоятельно — для этого нужно запустить оператор raise.

min = 100
if min > 10:
raise Exception('min must be less than 10')


> Traceback (most recent call last):
> File "test.py", line 3, in <module>
> raise Exception('min value must be less than 10')
> Exception: min must be less than 10

Перехватываются такие сообщения точно так же, как и остальные:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')

> Моя ошибка

Кроме того, ошибку можно обработать в блоке except и пробросить дальше (вверх по стеку) с помощью raise:

min = 100

try:
if min > 10:
raise Exception('min must be less than 10')
except Exception:
print('Моя ошибка')
raise

> Моя ошибка
> Traceback (most recent call last):
> File "test.py", line 5, in <module>
> raise Exception('min must be less than 10')
> Exception: min must be less than 10

Как пропустить ошибку

Иногда ошибку обрабатывать не нужно. В этом случае ее можно пропустить с помощью pass:

try:
a = 7 / 0
except ZeroDivisionError:
pass

Исключения в lambda функциях

Обрабатывать исключения внутри lambda функций нельзя (так как lambda записывается в виде одного выражения). В этом случае нужно использовать именованную функцию.

Иерархия классов для встроенных исключений в Python выглядит так:

BaseException
SystemExit
KeyboardInterrupt
GeneratorExit
Exception
ArithmeticError
AssertionError
...
...
...
ValueError
Warning

Все исключения в Python наследуются от базового BaseException:

  • SystemExit — системное исключение, вызываемое функцией sys.exit() во время выхода из приложения;
  • KeyboardInterrupt — возникает при завершении программы пользователем (чаще всего при нажатии клавиш Ctrl+C);
  • GeneratorExit — вызывается методом close объекта generator;
  • Exception — исключения, которые можно и нужно обрабатывать (предыдущие были системными и их трогать не рекомендуется).

От Exception наследуются:

1 StopIteration — вызывается функцией next в том случае если в итераторе закончились элементы;

2 ArithmeticError — ошибки, возникающие при вычислении, бывают следующие типы:

  • FloatingPointError — ошибки при выполнении вычислений с плавающей точкой (встречаются редко);
  • OverflowError — результат вычислений большой для текущего представления (не появляется при операциях с целыми числами, но может появиться в некоторых других случаях);
  • ZeroDivisionError — возникает при попытке деления на ноль.

3 AssertionError — выражение, используемое в функции assert неверно;

4 AttributeError — у объекта отсутствует нужный атрибут;

5 BufferError — операция, для выполнения которой требуется буфер, не выполнена;

6 EOFError — ошибка чтения из файла;

7 ImportError — ошибка импортирования модуля;

8 LookupError — неверный индекс, делится на два типа:

  • IndexError — индекс выходит за пределы диапазона элементов;
  • KeyError — индекс отсутствует (для словарей, множеств и подобных объектов);

9 MemoryError — память переполнена;

10 NameError — отсутствует переменная с данным именем;

11 OSError — исключения, генерируемые операционной системой:

  • ChildProcessError — ошибки, связанные с выполнением дочернего процесса;
  • ConnectionError — исключения связанные с подключениями (BrokenPipeError, ConnectionResetError, ConnectionRefusedError, ConnectionAbortedError);
  • FileExistsError — возникает при попытке создания уже существующего файла или директории;
  • FileNotFoundError — генерируется при попытке обращения к несуществующему файлу;
  • InterruptedError — возникает в том случае если системный вызов был прерван внешним сигналом;
  • IsADirectoryError — программа обращается к файлу, а это директория;
  • NotADirectoryError — приложение обращается к директории, а это файл;
  • PermissionError — прав доступа недостаточно для выполнения операции;
  • ProcessLookupError — процесс, к которому обращается приложение не запущен или отсутствует;
  • TimeoutError — время ожидания истекло;

12 ReferenceError — попытка доступа к объекту с помощью слабой ссылки, когда объект не существует;

13 RuntimeError — генерируется в случае, когда исключение не может быть классифицировано или не подпадает под любую другую категорию;

14 NotImplementedError — абстрактные методы класса нуждаются в переопределении;

15 SyntaxError — ошибка синтаксиса;

16 SystemError — сигнализирует о внутренне ошибке;

17 TypeError — операция не может быть выполнена с переменной этого типа;

18 ValueError — возникает когда в функцию передается объект правильного типа, но имеющий некорректное значение;

19 UnicodeError — исключение связанное с кодирование текста в unicode, бывает трех видов:

  • UnicodeEncodeError — ошибка кодирования;
  • UnicodeDecodeError — ошибка декодирования;
  • UnicodeTranslateError — ошибка перевода unicode.

20 Warning — предупреждение, некритическая ошибка.

💭 Посмотреть всю цепочку наследования конкретного типа исключения можно с помощью модуля inspect:

import inspect

print(inspect.getmro(TimeoutError))

> (<class 'TimeoutError'>, <class 'OSError'>, <class 'Exception'>, <class 'BaseException'>, <class 'object'>)

📄 Подробное описание всех классов встроенных исключений в Python смотрите в официальной документации.

Как создать свой тип Exception

В Python можно создавать свои исключения. При этом есть одно обязательное условие: они должны быть потомками класса Exception:

class MyError(Exception):
def __init__(self, text):
self.txt = text

try:
raise MyError('Моя ошибка')
except MyError as er:
print(er)

> Моя ошибка


С помощью try/except контролируются и обрабатываются ошибки в приложении. Это особенно актуально для критически важных частей программы, где любые «падения» недопустимы (или могут привести к негативным последствиям). Например, если программа работает как «демон», падение приведет к полной остановке её работы. Или, например, при временном сбое соединения с базой данных, программа также прервёт своё выполнение (хотя можно было отловить ошибку и попробовать соединиться в БД заново).

Вместе с try/except можно использовать дополнительные блоки. Если использовать все блоки описанные в статье, то код будет выглядеть так:

try:
# попробуем что-то сделать
except (ZeroDivisionError, ValueError) as e:
# обрабатываем исключения типа ZeroDivisionError или ValueError
except Exception as e:
# исключение не ZeroDivisionError и не ValueError
# поэтому обрабатываем исключение общего типа (унаследованное от Exception)
# сюда не сходят исключения типа GeneratorExit, KeyboardInterrupt, SystemExit
else:
# этот блок выполняется, если нет исключений
# если в этом блоке сделать return, он не будет вызван, пока не выполнился блок finally
finally:
# этот блок выполняется всегда, даже если нет исключений else будет проигнорирован
# если в этом блоке сделать return, то return в блоке

Подробнее о работе с исключениями в Python можно ознакомиться в официальной документации.

Уровень сложности
Средний

Время на прочтение
8 мин

Количество просмотров 7.7K

Люди, которые пишут код, часто воспринимают работу с исключениями как необходимое зло. Но освоение системы обработки исключений в Python способно повысить профессиональный уровень программиста, сделать его эффективнее. В этом материале я разберу следующие темы, изучение которых поможет всем желающим раскрыть потенциал Python через разумный подход к обработке исключений:

  • Что такое обработка исключений?

  • Разница между оператором if и обработкой исключений.

  • Использование разделов else и finally блока try-except для организации правильного обращения с ошибками.

  • Определение пользовательских исключений.

  • Рекомендации по обработке исключений.

Что такое обработка исключений?

Обработка исключений — это процесс написания кода для перехвата и обработки ошибок или исключений, которые могут возникать при выполнении программы. Это позволяет разработчикам создавать надёжные программы, которые продолжают работать даже при возникновении неожиданных событий или ошибок. Без системы обработки исключений подобное обычно приводит к фатальным сбоям.

Когда возникают исключения — Python выполняет поиск подходящего обработчика исключений. После этого, если обработчик будет найден, выполняется его код, в котором предпринимаются уместные действия. Это может быть логирование данных, вывод сообщения, попытка восстановить работу программы после возникновения ошибки. В целом можно сказать, что обработка исключения помогает повысить надёжность Python-приложений, улучшает возможности по их поддержке, облегчает их отладку.

Различия между оператором if и обработкой исключений

Главные различия между оператором if и обработкой исключений в Python произрастают из их целей и сценариев использования.

Оператор if — это базовый строительный элемент структурного программирования. Этот оператор проверяет условие и выполняет различные блоки кода, основываясь на том, истинно проверяемое условие или ложно. Вот пример:

temperature = int(input("Please enter temperature in Fahrenheit: "))
if temperature > 100:
    print("Hot weather alert! Temperature exceeded 100°F.")
elif temperature >= 70:
    print("Warm day ahead, enjoy sunny skies.")
else:
    print("Bundle up for chilly temperatures.")

Обработка исключений, с другой стороны, играет важную роль в написании надёжных и отказоустойчивых программ. Эта роль раскрывается через работу с неожиданными событиями и ошибками, которые могут возникать во время выполнения программы.

Исключения используются для подачи сигналов о проблемах и для выявления участков кода, которые нуждаются в улучшении, отладке, или в оснащении их дополнительными механизмами для проверки ошибок. Исключения позволяют Python достойно справляться с ситуациями, в которых возникают ошибки. В таких ситуациях исключения дают возможность продолжать выполнение скрипта вместо того, чтобы резко его останавливать.

Рассмотрим следующий код, демонстрирующий пример того, как можно реализовать обработку исключений и улучшить ситуацию с потенциальными отказами, связанными с делением на ноль:

# Определение функции, которая пытается поделить число на ноль
def divide(x, y):
    result = x / y
    return result
# Вызов функции divide с передачей ей x=5 и y=0
result = divide(5, 0)
print(f"Result of dividing {x} by {y}: {result}")

Вывод:

Traceback (most recent call last):
  File "<stdin>", line 8, in <module>
ZeroDivisionError: division by zero attempted

После того, как было сгенерировано исключение, программа, не дойдя до инструкции print, сразу же прекращает выполняться.

Вышеописанное исключение можно обработать, обернув вызов функции divide в блок try-except:

# Определение функции, которая пытается поделить число на ноль
def divide(x, y):
    result = x / y
    return result
# Вызов функции divide с передачей ей x=5 и y=0
try:
    result = divide(5, 0)
    print(f"Result of dividing {x} by {y}: {result}")
except ZeroDivisionError:
    print("Cannot divide by zero.")

Вывод:

Cannot divide by zero.

Сделав это, мы аккуратно обработали исключение ZeroDivisionError, предотвратили аварийное завершение остального кода из-за необработанного исключения.

Подробности о других встроенных Python-исключениях можно найти здесь.

Использование разделов else и finally блока try-except для организации правильного обращения с ошибками

При работе с исключениями в Python рекомендуется включать в состав блоков try-except и раздел else, и раздел finally. Раздел else позволяет программисту настроить действия, производимые в том случае, если при выполнении кода, который защищают от проблем, не было вызвано исключений. А раздел finally позволяет обеспечить обязательное выполнение неких заключительных операций, вроде освобождения ресурсов, независимо от факта возникновения исключений (вот и вот — полезные материалы об этом).

Например — рассмотрим ситуацию, когда нужно прочитать данные из файла и выполнить какие-то действия с этими данными. Если при чтении файла возникнет исключение — программист может решить, что надо залогировать ошибку и остановить выполнение дальнейших операций. Но в любом случае файл нужно правильно закрыть.

Использование разделов else и finally позволяет поступить именно так — обработать данные обычным образом в том случае, если исключений не возникло, либо обработать любые исключения, но, как бы ни развивались события, в итоге закрыть файл. Без этих разделов код страдал бы уязвимостями в виде утечки ресурсов или неполной обработки ошибок. В результате оказывается, что else и finally играют важнейшую роль в создании устойчивых к ошибкам и надёжных программ.

try:
    # Открытие файла в режиме чтения
    file = open("file.txt", "r")
    print("Successful opened the file")
except FileNotFoundError:
    # Обработка ошибки, возникающей в том случае, если файл не найден
    print("File Not Found Error: No such file or directory")
    exit()
except PermissionError:
    # Обработка ошибок, связанных с разрешением на доступ к файлу
    print("Permission Denied Error: Access is denied")
else:
    # Всё хорошо - сделать что-то с данными, прочитанными из файла
    content = file.read().decode('utf-8')
    processed_data = process_content(content)
    
# Прибираемся после себя даже в том случае, если выше возникло исключение
finally:
    file.close()

В этом примере мы сначала пытаемся открыть файл file.txt для чтения (в подобной ситуации можно использовать выражение with, которое гарантирует правильное автоматическое закрытие объекта файла после завершения работы). Если в процессе выполнения операций файлового ввода/вывода возникают ошибки FileNotFoundError или PermissionError — выполняются соответствующие разделы except. Здесь, ради простоты, мы лишь выводим на экран сообщения об ошибках и выходим из программы в том случае, если файл не найден.

В противном случае, если в блоке try исключений не возникло, мы продолжаем работу, обрабатывая содержимое файла в ветви else. И наконец — выполняется «уборка» — файл закрывается независимо от возникновения исключения. Это обеспечивает блок finally (подробности смотрите здесь).

Применяя структурированный подход к обработке исключений, напоминающий вышеописанный, можно поддерживать свой код в хорошо организованном состоянии и обеспечивать его читабельность. При этом код будет рассчитан на борьбу с потенциальными ошибками, которые могут возникнуть при взаимодействии с внешними системами или входными данными.

Определение пользовательских исключений

В Python можно определять пользовательские исключения путём создания подклассов встроенного класса Exception или любых других классов, являющихся прямыми наследниками Exception.

Для того чтобы определить собственное исключение — нужно создать новый класс, являющийся наследником одного из подходящих классов, и оснастить этот класс атрибутами, соответствующими нуждам программиста. Затем новый класс можно использовать в собственном коде, работая с ним так же, как работают со встроенными классами исключений.

Вот пример определения пользовательского исключения, названного InvalidEmailAddress:

class InvalidEmailAddress(ValueError):
    def __init__(self, message):
        super().__init__(message)
        self.msgfmt = message

Это исключение является наследником ValueError. Его конструктор принимает необязательный аргумент message (по умолчанию он устанавливается в значение invalid email address).

Вызвать это исключение можно в том случае, если в программе встретился адрес электронной почты, имеющий некорректный формат:

def send_email(address):
    if isinstance(address, str) == False:
        raise InvalidEmailAddress("Invalid email address")
# Отправка электронного письма

Теперь, если функции send_email() будет передана строка, содержащая неправильно оформленный адрес, то, вместо сообщения стандартной ошибки TypeError, будет выдано настроенное заранее сообщение об ошибке, которое чётко указывает на возникшую проблему. Например, это может выглядеть так:

>>> send_email(None)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/path/to/project/main.py", line 8, in send_email
    raise InvalidEmailAddress("Invalid email address")
InvalidEmailAddress: Invalid email address

Рекомендации по обработке исключений

Вот несколько рекомендаций, относящихся к обработке ошибок в Python:

  1. Проектируйте код в расчёте на возможное возникновение ошибок. Заранее планируйте устройство кода с учётом возможных сбоев и проектируйте программы так, чтобы они могли бы достойно обрабатывать эти сбои. Это означает — предугадывать возможные пограничные случаи и реализовывать подходящие обработчики ошибок.

  2. Используйте содержательные сообщения об ошибках. Сделайте так, чтобы программа выводила бы, на экран, или в файл журнала, подробные сообщения об ошибках, которые помогут пользователям понять — что и почему пошло не так. Старайтесь не применять обобщённые сообщения об ошибках, наподобие Error occurred или Something bad happened. Вместо этого подумайте об удобстве пользователя и покажите сообщение, в котором будет дан совет по решению проблемы или будет приведена ссылка на документацию. Постарайтесь соблюсти баланс между выводом подробных сообщений и перегрузкой пользовательского интерфейса избыточными данными.

  3. Минимизируйте побочные эффекты. Постарайтесь свести к минимуму последствия сбойных операций, изолируя проблемные разделы кода посредством конструкции try-finally или try с использованием with. Сделайте так, чтобы после выполнения кода, было ли оно удачным или нет, обязательно выполнялись бы «очистительные» операции.

  4. Тщательно тестируйте код. Обеспечьте корректное поведение обработчиков ошибок в различных сценариях использования программы, подвергнув код всеобъемлющему тестированию.

  5. Регулярно выполняйте рефакторинг кода. Выполняйте рефакторинг фрагментов кода, подверженных ошибкам, чтобы улучшить их надёжность и производительность. Постарайтесь, чтобы ваша кодовая база была бы устроена по модульному принципу, чтобы её отдельные части слабо зависели бы друг от друга. Это позволяет независимым частям код самостоятельно эволюционировать, не оказывая негативного воздействия на другие его части.

  6. Логируйте важные события. Следите за интересными событиями своего приложения, записывая сведения о них в файл журнала или выводя в консоль. Это поможет вам выявлять проблемы на ранних стадиях их возникновения, не тратя время на длительный анализ большого количества неструктурированных логов.

Итоги

Написание кода обработки ошибок — это неотъемлемая часть индустрии разработки ПО, и, в частности — разработки на Python. Это позволяет разработчикам создавать более надёжные и стабильные программы. Следуя индустриальным стандартам и рекомендациям по обработке исключений, разработчик может сократить время, необходимое на отладку кода, способен обеспечить написание качественных программ и сделать так, чтобы пользователям было бы приятно работать с этими программами.

О, а приходите к нам работать? 🤗 💰

Мы в wunderfund.io занимаемся высокочастотной алготорговлей с 2014 года. Высокочастотная торговля — это непрерывное соревнование лучших программистов и математиков всего мира. Присоединившись к нам, вы станете частью этой увлекательной схватки.

Мы предлагаем интересные и сложные задачи по анализу данных и low latency разработке для увлеченных исследователей и программистов. Гибкий график и никакой бюрократии, решения быстро принимаются и воплощаются в жизнь.

Сейчас мы ищем плюсовиков, питонистов, дата-инженеров и мл-рисерчеров.

Присоединяйтесь к нашей команде.

Toggle table of contents sidebar

try/except#

Если вы повторяли примеры, которые использовались ранее, то наверняка
были ситуации, когда выскакивала ошибка. Скорее всего, это была ошибка
синтаксиса, когда не хватало, например, двоеточия.

Как правило, Python довольно понятно реагирует на подобные ошибки, и их
можно исправить.

Тем не менее, даже если код синтаксически написан правильно, могут
возникать ошибки. В Python эти ошибки называются исключения (exceptions).

Примеры исключений:

In [1]: 2/0
-----------------------------------------------------
ZeroDivisionError: division by zero

In [2]: 'test' + 2
-----------------------------------------------------
TypeError: must be str, not int

В данном случае возникло два исключения: ZeroDivisionError и
TypeError.

Чаще всего можно предсказать, какого рода исключения возникнут во время
исполнения программы.

Например, если программа на вход ожидает два числа, а на выходе выдает
их сумму, а пользователь ввел вместо одного из чисел строку, появится
ошибка TypeError, как в примере выше.

Python позволяет работать с исключениями. Их можно перехватывать и
выполнять определенные действия в том случае, если возникло исключение.

Примечание

Когда в программе возникает исключение, она сразу завершает работу.

Для работы с исключениями используется конструкция try/except:

In [3]: try:
   ...:     2/0
   ...: except ZeroDivisionError:
   ...:     print("You can't divide by zero")
   ...:
You can't divide by zero

Конструкция try работает таким образом:

  • сначала выполняются выражения, которые записаны в блоке try

  • если при выполнения блока try не возникло никаких исключений, блок except пропускается,
    и выполняется дальнейший код

  • если во время выполнения блока try в каком-то месте возникло исключение,
    оставшаяся часть блока try пропускается

    • если в блоке except указано исключение, которое возникло, выполняется код в блоке except

    • если исключение, которое возникло, не указано в блоке except,
      выполнение программы прерывается и выдается ошибка

Обратите внимание, что строка Cool! в блоке try не выводится:

In [4]: try:
   ...:     print("Let's divide some numbers")
   ...:     2/0
   ...:     print('Cool!')
   ...: except ZeroDivisionError:
   ...:     print("You can't divide by zero")
   ...:
Let's divide some numbers
You can't divide by zero

В конструкции try/except может быть много except, если нужны разные
действия в зависимости от типа ошибки.

Например, скрипт divide.py делит два числа введенных пользователем:

# -*- coding: utf-8 -*-

try:
    a = input("Введите первое число: ")
    b = input("Введите второе число: ")
    print("Результат: ", int(a)/int(b))
except ValueError:
    print("Пожалуйста, вводите только числа")
except ZeroDivisionError:
    print("На ноль делить нельзя")

Примеры выполнения скрипта:

$ python divide.py
Введите первое число: 3
Введите второе число: 1
Результат:  3

$ python divide.py
Введите первое число: 5
Введите второе число: 0
На ноль делить нельзя

$ python divide.py
Введите первое число: qewr
Введите второе число: 3
Пожалуйста, вводите только числа

В данном случае исключение ValueError возникает, когда пользователь
ввел строку вместо числа, во время перевода строки в число.

Исключение ZeroDivisionError возникает в случае, если второе число было
равным 0.

Если нет необходимости выводить различные сообщения на ошибки ValueError
и ZeroDivisionError, можно сделать так (файл divide_ver2.py):

# -*- coding: utf-8 -*-

try:
    a = input("Введите первое число: ")
    b = input("Введите второе число: ")
    print("Результат: ", int(a)/int(b))
except (ValueError, ZeroDivisionError):
    print("Что-то пошло не так...")

Проверка:

$ python divide_ver2.py
Введите первое число: wer
Введите второе число: 4
Что-то пошло не так...

$ python divide_ver2.py
Введите первое число: 5
Введите второе число: 0
Что-то пошло не так...

Примечание

В блоке except можно не указывать конкретное исключение или
исключения. В таком случае будут перехватываться все исключения.

Это делать не рекомендуется!

try/except/else#

В конструкции try/except есть опциональный блок else. Он выполняется в
том случае, если не было исключения.

Например, если необходимо выполнять в дальнейшем какие-то операции с
данными, которые ввел пользователь, можно записать их в блоке else (файл
divide_ver3.py):

# -*- coding: utf-8 -*-

try:
    a = input("Введите первое число: ")
    b = input("Введите второе число: ")
    result = int(a)/int(b)
except (ValueError, ZeroDivisionError):
    print("Что-то пошло не так...")
else:
    print("Результат в квадрате: ", result**2)

Пример выполнения:

$ python divide_ver3.py
Введите первое число: 10
Введите второе число: 2
Результат в квадрате:  25

$ python divide_ver3.py
Введите первое число: werq
Введите второе число: 3
Что-то пошло не так...

try/except/finally#

Блок finally — это еще один опциональный блок в конструкции try. Он
выполняется всегда, независимо от того, было ли исключение или нет.

Сюда ставятся действия, которые надо выполнить в любом случае. Например,
это может быть закрытие файла.

Файл divide_ver4.py с блоком finally:

# -*- coding: utf-8 -*-

try:
    a = input("Введите первое число: ")
    b = input("Введите второе число: ")
    result = int(a)/int(b)
except (ValueError, ZeroDivisionError):
    print("Что-то пошло не так...")
else:
    print("Результат в квадрате: ", result**2)
finally:
    print("Вот и сказочке конец, а кто слушал - молодец.")

Проверка:

$ python divide_ver4.py
Введите первое число: 10
Введите второе число: 2
Результат в квадрате:  25
Вот и сказочке конец, а кто слушал - молодец.

$ python divide_ver4.py
Введите первое число: qwerewr
Введите второе число: 3
Что-то пошло не так...
Вот и сказочке конец, а кто слушал - молодец.

$ python divide_ver4.py
Введите первое число: 4
Введите второе число: 0
Что-то пошло не так...
Вот и сказочке конец, а кто слушал - молодец.

Когда использовать исключения#

Как правило, один и тот же код можно написать и с использованием
исключений, и без них.

Например, этот вариант кода:

while True:
    a = input("Введите число: ")
    b = input("Введите второе число: ")
    try:
        result = int(a)/int(b)
    except ValueError:
        print("Поддерживаются только числа")
    except ZeroDivisionError:
        print("На ноль делить нельзя")
    else:
        print(result)
        break

Можно переписать таким образом без try/except (файл
try_except_divide.py):

while True:
    a = input("Введите число: ")
    b = input("Введите второе число: ")
    if a.isdigit() and b.isdigit():
        if int(b) == 0:
            print("На ноль делить нельзя")
        else:
            print(int(a)/int(b))
            break
    else:
        print("Поддерживаются только числа")

Далеко не всегда аналогичный вариант без использования исключений
будет простым и понятным.

Важно в каждой конкретной ситуации оценивать, какой вариант кода более
понятный, компактный и универсальный — с исключениями или без.

Если вы раньше использовали какой-то другой язык программирования, есть
вероятность, что в нём использование исключений считалось плохим тоном.
В Python это не так. Чтобы немного больше разобраться с этим вопросом,
посмотрите ссылки на дополнительные материалы в конце этого раздела.

raise#

Иногда в коде надо сгенерировать исключение, это можно сделать так:

raise ValueError("При выполнении команды возникла ошибка")

Встроенные исключения#

В Python есть много встроенных исключений,
каждое из которых генерируется в
определенной ситуации.

Например, TypeError обычно генерируется когда ожидался один тип данных, а передали другой

In [1]: "a" + 3
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-1-5aa8a24e3e06> in <module>
----> 1 "a" + 3
TypeError: can only concatenate str (not "int") to str

ValueError когда значение не соответствует ожидаемому:

In [2]: int("a")
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-2-d9136db7b558> in <module>
----> 1 int("a")
ValueError: invalid literal for int() with base 10: 'a'

Если не указывать интересующий класс ошибки, то будет любая ошибка отлавливаться.
Ну или как вариант в виде кортежа можно несколько классов перечислить, если нужно отловить ошибку из интересующих классов, а так, да, согласен, что нужно всегда указывать класс ошибки.

Написано

более трёх лет назад

А. Вам нужно понимать, что если вы делаете try except то код прервётся только в том случае, если вы ЯВНО прервёте его исполнение, к примеру, командой exit() в блоке except. То есть, в такой конструкции:

aab = '123'
b = 3

try:
     print(aab+b)
except:
     print('123')
print('Я бегу бабу ягу')
print('Заяц - Волк')

В случае «без ошибки», выполниться блок try и весь остальной код, за гранью блока try except. В случае ошибки — выполняется except, и далее код за гранью try except.
В конкретно этом примере два последних принта:

print('Я бегу бабу ягу')
print('Заяц - Волк')

выполнятся в любом случае!

Б. Вывести текст ошибки можно принципиально двумя путями:

Объявить except как переменную и эту переменную «распечатать»:

except as err:
    print(err)

введите сюда описание изображения

— ИЛИ —

Импортировать библиотеку traceback и распечатать «полный путь» ошибки:

import traceback    
except:
        print(traceback.format_exc())

введите сюда описание изображения

Первый вариант печатает только «последний» пункт ошибки, чаще всего этого хватает. Но иногда, необходим детальный путь — traceback

Вот тут можно почитать про try except — https://pythonworld.ru/tipy-dannyx-v-python/isklyucheniya-v-python-konstrukciya-try-except-dlya-obrabotki-isklyuchenij.html

Обработка исключений

При выполнении заданий к главам вы, скорее всего, нередко сталкивались с возникновением различных ошибок. В этой главе мы изучим подход, который позволяет обрабатывать ошибки после их возникновения.

Напишем программу, которая будет считать обратные значения для целых чисел из заданного диапазона и выводить их в одну строку с разделителем ‘;’. Один из вариантов кода для решения этой задачи выглядит так:

print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))

Программа получилась в одну строчку за счёт использования списочных выражений. Однако при вводе диапазона чисел, включающего в себя 0 (например, от -1 до 1), программа выдаст следующую ошибку:

ZeroDivisionError: division by zero

В программе произошла ошибка «деление на ноль». Такая ошибка, возникающая при выполнении программы и останавливающая её работу, называется исключением.

Попробуем в нашей программе избавиться от возникновения исключения деления на ноль. Пусть при попадании 0 в диапазон чисел обработка не производится и выводится сообщение «Диапазон чисел содержит 0». Для этого нужно проверить до списочного выражения наличие нуля в диапазоне:

interval = range(int(input()), int(input()) + 1)
if 0 in interval:
    print("Диапазон чисел содержит 0.")
else:
    print(";".join(str(1 / x) for x in interval))

Теперь для диапазона, включающего в себя 0, например от -2 до 2, исключения ZeroDivisionError не возникнет. Однако при вводе строки, которую невозможно преобразовать в целое число (например, «a»), будет вызвано другое исключение:

ValueError: invalid literal for int() with base 10: 'a'

Произошло исключение ValueError. Для борьбы с этой ошибкой нам придётся проверить, что строка состоит только из цифр. Сделать это нужно до преобразования в число. Тогда наша программа будет выглядеть так:

start = input()
end = input()
# Метод lstrip("-"), удаляющий символы "-" в начале строки, нужен для учёта
# отрицательных чисел, иначе isdigit() вернёт для них False
if not (start.lstrip("-").isdigit() and end.lstrip("-").isdigit()):
    print("
    ввести два числа.")
else:
    interval = range(int(start), int(end) + 1)
    if 0 in interval:
        print("Диапазон чисел содержит 0.")
    else:
        print(";".join(str(1 / x) for x in interval))

Теперь наша программа работает без ошибок и при вводе строк, которые нельзя преобразовать в целое число.

Подход, который был нами применён для предотвращения ошибок, называется Look Before You Leap (LBYL), или «Посмотри перед прыжком». В программе, реализующей такой подход, проверяются возможные условия возникновения ошибок до исполнения основного кода.

Подход LBYL имеет недостатки. Программу из примера стало сложнее читать из-за вложенного условного оператора. Проверка условия, что строка может быть преобразована в число, выглядит даже сложнее, чем списочное выражение. Вложенный условный оператор не решает поставленную задачу, а только лишь проверяет входные данные на корректность. Легко заметить, что решение основной задачи заняло меньше времени, чем составление условий проверки корректности входных данных.

Существует другой подход для работы с ошибками: Easier to Ask Forgiveness than Permission (EAFP), или «Проще попросить прощения, чем разрешения». В этом подходе сначала исполняется код, а в случае возникновения ошибок происходит их обработка. Подход EAFP реализован в Python в виде обработки исключений.

Исключения в Python являются классами ошибок. В Python есть много стандартных исключений. Они имеют определённую иерархию за счёт механизма наследования классов. В документации Python версии 3.10.8 приводится следующее дерево иерархии стандартных исключений:

BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      +-- BufferError
      +-- EOFError
      +-- ImportError
      |    +-- ModuleNotFoundError
      +-- LookupError
      |    +-- IndexError
      |    +-- KeyError
      +-- MemoryError
      +-- NameError
      |    +-- UnboundLocalError
      +-- OSError
      |    +-- BlockingIOError
      |    +-- ChildProcessError
      |    +-- ConnectionError
      |    |    +-- BrokenPipeError
      |    |    +-- ConnectionAbortedError
      |    |    +-- ConnectionRefusedError
      |    |    +-- ConnectionResetError
      |    +-- FileExistsError
      |    +-- FileNotFoundError
      |    +-- InterruptedError
      |    +-- IsADirectoryError
      |    +-- NotADirectoryError
      |    +-- PermissionError
      |    +-- ProcessLookupError
      |    +-- TimeoutError
      +-- ReferenceError
      +-- RuntimeError
      |    +-- NotImplementedError
      |    +-- RecursionError
      +-- SyntaxError
      |    +-- IndentationError
      |         +-- TabError
      +-- SystemError
      +-- TypeError
      +-- ValueError
      |    +-- UnicodeError
      |         +-- UnicodeDecodeError
      |         +-- UnicodeEncodeError
      |         +-- UnicodeTranslateError
      +-- Warning
           +-- DeprecationWarning
           +-- PendingDeprecationWarning
           +-- RuntimeWarning
           +-- SyntaxWarning
           +-- UserWarning
           +-- FutureWarning
           +-- ImportWarning
           +-- UnicodeWarning
           +-- BytesWarning
           +-- EncodingWarning
           +-- ResourceWarning

Для обработки исключения в Python используется следующий синтаксис:

try:
    <код , который может вызвать исключения при выполнении>
except <классисключения_1>:
    <код обработки исключения>
except <классисключения_2>:
    <код обработки исключения>
...
else:
    <код выполняется, если не вызвано исключение в блоке try>
finally:
    <код , который выполняется всегда>

Блок try содержит код, в котором нужно обработать исключения, если они возникнут.
При возникновении исключения интерпретатор последовательно проверяет, в каком из блоков except обрабатывается это исключение.
Исключение обрабатывается в первом блоке except, обрабатывающем класс этого исключения или базовый класс возникшего исключения.
Необходимо учитывать иерархию исключений для определения порядка их обработки в блоках except. Начинать обработку исключений следует с более узких классов исключений. Если начать с более широкого класса исключения, например Exception, то всегда при возникновении исключения будет срабатывать первый блок except.
Сравните два следующих примера. В первом порядок обработки исключений указан от производных классов к базовым, а во втором — наоборот.

Первый пример:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")

При вводе значений «0» и «a» получим ожидаемый, соответствующий возникающим исключениям вывод:

Невозможно преобразовать строку в число.

и

Ошибка деления на ноль.

Второй пример:

try:
    print(1 / int(input()))
except Exception:
    print("Неизвестная ошибка.")
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")

При вводе значений «0» и «a» получим в обоих случаях неинформативный вывод:

Неизвестная ошибка.

Необязательный блок else выполняет код в случае, если в блоке try не вызвано исключение. Добавим блок else в пример для вывода сообщения об успешном выполнении операции:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")

Теперь при вводе корректного значения, например «5», вывод программы будет следующим:

2.0
Операция выполнена успешно.

Блок finally выполняется всегда, даже если возникло какое-то исключение, не учтённое в блоках except, или код в этих блоках сам вызвал какое-либо исключение. Добавим в нашу программу вывод строки «Программа завершена» в конце программы даже при возникновении исключений:

try:
    print(1 / int(input()))
except ZeroDivisionError:
    print("Ошибка деления на ноль.")
except ValueError:
    print("Невозможно преобразовать строку в число.")
except Exception:
    print("Неизвестная ошибка.")
else:
    print("Операция выполнена успешно.")
finally:
    print("Программа завершена.")

Перепишем код, созданный с применением подхода LBYL, для первого примера из этой главы с использованием обработки исключений:

try:
    print(";".join(str(1 / x) for x in range(int(input()), int(input()) + 1)))
except ZeroDivisionError:
    print("Диапазон чисел содержит 0.")
except ValueError:
    print("Необходимо ввести два числа.")

Теперь наша программа читается намного легче. При этом создание кода для обработки исключений не заняло много времени и не потребовало проверки сложных условий.

Исключения можно принудительно вызывать с помощью оператора raise. Этот оператор имеет следующий синтаксис:

raise <класс исключения>(параметры)

В качестве параметра можно, например, передать строку с сообщением об ошибке.

Создание собственных исключений

В Python можно создавать свои собственные исключения. Синтаксис создания исключения такой же, как и у создания класса. При создании исключения его необходимо наследовать от какого-либо стандартного класса-исключения.

Напишем программу, которая выводит сумму списка целых чисел и вызывает исключение, если в списке чисел есть хотя бы одно чётное или отрицательное число. Создадим свои классы исключений:

  • NumbersError — базовый класс исключения;
  • EvenError — исключение, которое вызывается при наличии хотя бы одного чётного числа;
  • NegativeError — исключение, которое вызывается при наличии хотя бы одного отрицательного числа.
class NumbersError(Exception):
    pass


class EvenError(NumbersError):
    pass


class NegativeError(NumbersError):
    pass


def no_even(numbers):
    if all(x % 2 != 0 for x in numbers):
        return True
    raise EvenError("В списке не должно быть чётных чисел")


def no_negative(numbers):
    if all(x >= 0 for x in numbers):
        return True
    raise NegativeError("В списке не должно быть отрицательных чисел")


def main():
    print("Введите числа в одну строку через пробел:")
    try:
        numbers = [int(x) for x in input().split()]
        if no_negative(numbers) and no_even(numbers):
            print(f"Сумма чисел равна: {sum(numbers)}.")
    except NumbersError as e:  # обращение к исключению как к объекту
        print(f"Произошла ошибка: {e}.")
    except Exception as e:
        print(f"Произошла непредвиденная ошибка: {e}.")

        
if __name__ == "__main__":
    main()

Модули

Обратите внимание: в программе основной код выделен в функцию main. А код вне функций содержит только условный оператор и вызов функции main при выполнении условия __name__ == "__main__". Это условие проверяет, запущен ли файл как самостоятельная программа или импортирован как модуль.

Любая программа, написанная на языке программирования Python, может быть импортирована как модуль в другую программу. В идеологии Python импортировать модуль — значит полностью его выполнить. Если основной код модуля содержит вызовы функций, ввод или вывод данных без использования указанного условия __name__ == "__main__", то произойдёт полноценный запуск программы. А это не всегда удобно, если из модуля нужна только отдельная функция или какой-либо класс.

При изучении модуля itertools мы говорили о том, как импортировать модуль в программу. Покажем ещё раз два способа импорта на примере собственного модуля.

Для импорта модуля из файла, например example_module.py, нужно указать его имя, если он находится в той же папке, что и импортирующая его программа:

import example_module

Если требуется отдельный компонент модуля, например функция или класс, то импорт можно осуществить так:

from example_module import some_function, ExampleClass

Обратите внимание: при втором способе импортированные объекты попадают в пространство имён новой программы. Это означает, что они будут объектами новой программы и в программе не должно быть других объектов с такими же именами.

Рассмотрим написанное выше на примере. Пусть имеется программа module_hello.py, в которой находится функция hello(name), возвращающая строку приветствия пользователя по имени. В самой программе кроме функции присутствует вызов этой функции и печать результата её работы. Импортируем из модуля module_hello.py функцию hello(name) в другую программу program.py и также используем для вывода приветствия пользователя.

Код программы module_hello.py:

def hello(name):
    return f"Привет, {name}!"


print(hello(input("Введите своё имя: ")))

Код программы program.py:

from module_hello import hello

print(hello(input("Добрый день. Введите имя: ")))

При выполнении program.py нас ожидает неожиданное действие. Программа сначала запросит имя пользователя, а затем сделает это ещё раз, но с приветствием из program.py.

Введите своё имя: Андрей
Привет, Андрей!
Добрый день. Введите имя: Андрей
Привет, Андрей!

Наша ошибка заключается в том, что программа module_hello.py выполняется полностью, включая основной код с вызовом функции и выводом результата. Исправим программу module_hello.py, добавив проверку, запущена программа или импортирована как модуль:

def hello(name):
    return f"Привет, {name}!"


if __name__ == "__main__":
    print(hello(input("Введите своё имя: ")))

Теперь при импорте модуля module_hello.py код в теле условного оператора выполняться не будет. А основной код этой программы выполнится только при запуске файла как отдельной программы.
Для большего удобства обычно в теле указанного условного оператора вызывают функцию main(), а основной код программы оформляют уже внутри этой функции.
Тогда наш модуль можно переписать так:

def hello(name):
    return f"Привет, {name}!"


def main():
    print(hello(input("Введите своё имя: ")))


if __name__ == "__main__":
    main()

Обратите внимание: при импорте модуля мы можем с помощью символа * указать, что необходимо импортировать все объекты. Например, так:

from some_module import *

Однако делать так крайне не рекомендуется, потому что все объекты модуля добавляются в пространство имён нашей программы, что может приводить к конфликтам.

Возможно, вам также будет интересно:

  • После тщательного обследования врачи вынесут свое реноме ошибка
  • После проверки флешки на ошибки флешка не открывается
  • После переустановки windows выдает ошибку
  • После танковой атаки было принято решение отступать назад ошибка
  • После проверки флешки на ошибки пропали файлы как восстановить

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии