Omron varispeed v7 ошибка ol2

6 минут назад, Ruslan68 сказал:

Кто нибудь знает что еще настроить?

Пользую такой же частотник 18квт. Брал б/у. Не с того ни с сего стала выскакивать ошибка КЗ на землю. Все перепробовал, и настройки, и провода менял, и мотор мегометром смотрели.

Потом вскрыл частотник, крепеж весь был расслаблен, откинул верхнюю плату, чтоб подобраться к остальным болтам. Один из болтов прикручивающий провод какого то датчика почти открутился, видимо от вибрации пропадал контакт. Ошибка возникала раз-два в сутки, хаотично.

Протянув весь крепеж, проблема ушла. И уже пол-года не проявляет себя. Может и у вас проблема где то в незатянутом крепеже.

Error

Code

Function code error

01H

• Function code from PLC is other than 03H, 08H, or 10H.

Improper register number

• No register numbers to be accessed have been registered.

02H

• Enter Command «0900H» (an exclusive-use register for write-in)

was read out.

Improper quantity

• The number of data items to be read or written-in is not in the

03H

range between 1 and 16.

• The number of data items in a message is not the value obtained

by multiplying the quantity by two in the write-in mode.

Data setting error

• A simple upper/lower limit error occurred with control data or con-

21H

stant write-in.

• A constant setting error occurred when a constant was written.

Write-in mode error

• Attempt to write in a constant from PLC was made during run-

ning.*

• Attempt to write in an Enter Command from PLC was made dur-

ing running (n170=0).

• Attempt to write in a constant from PLC was made during UV

occurrence.

22H

• Attempt to write in an Enter Command from PLC was made dur-

ing UV occurrence.

• Attempt to write in a constant other than n001=12, 13 (constant

initialization) from PLC was made during «F04» occurrence.

• Attempt to write in a constant from PLC was made while data

were being stored.

• Attempt to write in data exclusive for read-out from PLC was

made.

* Refer to the constants list for constants that can be changed during opera-

tion.

6 Programming Features

Contents

157

Оглавление

Коды ошибок

ос1ос2ос3ос0UC1, UC2, UC3OU1 – для серии mini / oU1 – для серии mini PLUSOU2 – для серии mini / oU2 – для серии mini PLUSOU3 – для серии mini / oU3 – для серии mini PLUSOU0Lu0Lu1, Lu2, Lu3;  LU;  oL0, oL1, oL2, oL3;  оГ0, оГ1, оГ2, оГ3ESoHEFCO – обозначение у mini / Co – обозначение у mini PLUS;

20, 201, 202, 203 – обозначение у серии mini / 20 – обозначение у серии mini PLUSnF0, nF1, nF2, nF3ErroH0, OH1, OH2, OH3oHLPHPLLSLP;

Стандартные ошибки и проблемы

1.      Параметр не может быть изменён.

2.      Перегрев двигателя.

3.      Двигатель не запускается при нажатии кнопки «ПУСК» на внешнем пульте управления.

4.      Двигатель вибрирует или шумит.

5.      Двигатель не работает в режиме реверса.

6.      Двигатель работает в режиме реверса.

7.      Запуск ПЧ нарушает работу других устройств.

Сброс ошибок

Ошибки имеют различные кодовые обозначения, — и в случае возникновения ошибки в процессе работы – их коды будут отображены на дисплее, как это проиллюстрировано изображением.

Коды ошибок

ос1

Описание: обозначение ошибки в параметрах РА10 – РА13, такая ошибка возникает в результате возникновения сверхтока во время ускорения.

Возможные причины:

  • Недостаточное время ускорения.
  • Неправильно задана зависимость для V/f-кривой.
  • Короткое замыкание в обмотках двигателя или его обмоток на землю.
  • Установлен слишком большой буст.
  • Низкое напряжение в электрической сети.
  • Пуск при вращающемся двигателе.
  • Неправильная настройка ПЧ.
  • Выход ПЧ из строя.

Решения:

  • Увеличение времени ускорения.
  • Задание соответствующей зависимости для V/f-кривой.
  • Проверка сопротивления изоляции (при помощи мегаомметра, отсоединив при этом ПЧ).
  • Уменьшение буста.
  • Проверка напряжения электросети.
  • Запуск с поиском частоты.
  • Установка правильных параметров запуска.
  • Замена ПЧ более мощным.
  • Отправление в ремонт.

ос2

Описание: возникновение сверхтока при торможении.

Возможные причины:

  • Малое время торможения.
  • Недостаточная мощность ПЧ.
  • Наличие источника электромагнитных помех.

Решения:

  • Увеличьте время торможения.
  • Увеличьте мощность ПЧ.
  • Устраните источник помех.

ос3

Описание: такая ошибка возникает в результате появления сверхтока во время работы на постоянной скорости.

Возможные причины:

  • Повреждена изоляция двигателя и его выводов.
  • Большие изменения нагрузки, заклинивание ротора двигателя.
  • Перепады напряжения в сети, низкое напряжение электросети.
  • Недостаточная мощность ПЧ.
  • Подключение к ПЧ мощных двигателей.
  • Наличие источника электромагнитных помех.

Решения:

  • Проверьте изоляцию.
  • Проверьте нагрузку, устраните заклинивание, нанесите смазку при необходимости.
  • Проверьте напряжение сети.
  • Увеличьте мощность ПЧ или уменьшите нагрузку.
  • Увеличьте мощность преобразователя.
  • Устраните источник помех.

ос0 (актуально для серии mini)

Описание: возникновение сверхтока.

Возможная причина:

  • Выход ПЧ из строя.

Решение:

  • Замена ПЧ.

UC1, UC2, UC3 (актуально для серии mini)

Описание: внутреннее короткое замыкание или замыкание в преобразователе.

Возможная причина:

  • Неисправность IGBT-модуля или цепей управления этим модулем.

Решения:

До истечения гарантийного срока:

  • Обратиться в сервис гарантийного обслуживания.

После истечения гарантийного срока:

  • Осмотреть преобразователь на предмет наличия внутри него посторонних предметов или жидкостей.
    Проверьте цепи управления силовыми транзисторами.
  • Замените преобразователь.

OU1 – для серии mini / oU1 – для серии mini PLUS

Описание: перенапряжение при ускорении.

Возможные причины:

  • Напряжение питания слишком велико.
  • Неправильная конфигурация внешней цепи (например, использование запуска двигателя подачей напряжения сети).
  • Выход ПЧ из строя.

Решения:

  • Проверьте напряжение питания.
  • Не используйте автоматический выключатель или пускатель для пуска электродвигателя, питающегося от ПЧ.
  • Отправьте в ремонт.

OU2 – для серии mini / oU2 – для серии mini PLUS

Описание: перенапряжение во время работы.

Возможные причины:

  • Напряжение питания слишком велико.
  • Перегрузка из-за неправильной работы PID-регулятора.
  • Несоответствующий тормозной резистор или тормозной модуль.

Решения:

  • Проверьте напряжение питания.
    Подстройте коэффициенты обратной связи.
  • Установите соответствующий тормозной резистор или тормозной модуль.

OU3 – для серии mini / oU3 – для серии mini PLUS

Описание: перенапряжение при торможении.

Возможные причины:

  • Малое время торможения.
  • Напряжение питания слишком велико.
  • Большой момент инерции нагрузки.
  • Неподходящий тормозной резистор.
  • Неправильно выбран коэффициент использования тормозного модуля.

Решения:

  • Увеличьте время торможения.
  • Проверьте напряжение источника питания.
  • Установите подходящий тормозной резистор и тормозной модуль.
  • Подберите соответствующее тормозное сопротивление.
  • Установите подходящее значение коэффициента использования тормозного модуля.

OU0 (актуально для серии mini)

Описание: перенапряжение в звене постоянного тока.

Возможные причины:

  • Малое время торможения.
  • Недостаточная мощность ПЧ.
  • Наличие источника помех.

Решения:

  • Увеличьте время торможения.
  • Замените ПЧ на более мощный.
  • Устраните источник помех.

Lu0 (актуально для серии mini)

Описание: пониженное напряжение до момента пуска преобразователя.

Возможные причины:

  • Электросеть выдает пониженное напряжение.
  • Отсутствие напряжение питания.
  • Высвечивается при включении преобразователя (не является ошибкой).

Решения:

  • Проверьте напряжение электросети.
  • Проверьте автоматический выключатель и наличие напряжения.

Lu1, Lu2, Lu3 (актуально для серии mini)

Описание: пониженное напряжение при разгоне, работе, торможении соответственно.

Возможные причины:

  • Электросеть выдает пониженное напряжение.
  • Отсутствие напряжение на фазе.
  • Большая нагрузка на электросеть.

Решения:

  • Проверьте напряжение электросеть.
  • Проверьте подсоединение внешних контактов.
  • Используйте отдельный источник питания.

LU (актуально для серии mini PLUS)

Описание: пониженное напряжение.

Возможные причины:

  • Источник питания выдает пониженное напряжение.
  • Отсутствие напряжение питания.
  • Высвечивается при включении преобразователя (не является ошибкой).

Решения:

  • Проверьте напряжение источника питания.
  • Проверьте автоматический выключатель и наличие напряжения.

oL0, oL1, oL2, oL3 (у серии mini PLUS используются коды oL1, oL2)

Описание: ПЧ и / или двигатель перегружен при остановке, разгоне, торможении, в рабочем режиме соответственно.

Возможные причины:

  • Большая нагрузка.
  • Малое время ускорения.
  • Установлен большой буст (параметрPC08).
  • Неправильно задана зависимость для V/F-кривой.
  • Низкое напряжение в электросети.
  • Запуск ПЧ при вращающемся двигателе.
  • Заклинивание нагрузки.
  • Номинальный ток двигателя задан не верно.

Решения:

  • Уменьшите нагрузку или увеличьте мощность ПЧ.
  • Увеличьте время ускорения.
  • Уменьшите буст.
  • Задайте подходящую зависимость для V/F- кривой.
    Проверьте напряжение электросети или увеличьте мощность ПЧ.
    Измените процедуру запуска ПЧ.
  • Проверьте нагрузку двигателя.
  • Правильно задайте параметр PC10.

оГ0, оГ1, оГ2, оГ3 (актуально для серии mini)

Описание: превышен уровень допустимого тока при остановке, при разгоне, при торможении, в рабочем режиме соответственно.

Возможные причины:

  • Большая нагрузка.
    Малое время ускорения.
  • Установленный уровень допустимого тока слишком низок (см. параметр PE23).
  • Неправильно задана зависимость для V/F-кривой.
    Установлен большой буст.
  • Нарушена изоляция двигателя.
  • Недостаточная мощность двигателя.

Решения:

  • Снизьте нагрузку.
  • Увеличьте время ускорения.
  • Установите правильно параметр PE23.
  • Задайте корректную зависимость для V/F- кривой.
  • Уменьшите буст (PC08).
  • Проверьте сопротивление изоляции двигателя, при отключенном от двигателя преобразователе.
  • Установите более мощный двигатель

ES (актуально для серии mini

Описание: аварийное отключение.

Возможная причина:

  • аварийное отключение ПЧ (на один из дискретных входов подан сигнал на остановку «Свободным выбегом»).

Решение:

  • Запустите ПЧ согласно инструкции после устранения аварийной ситуации.

oH (актуально для серии mini PLUS)

Описание: перегрев силового модуля в ПЧ.

Возможные причины:

  • Высокая температура окружающей среды.
  • Засорен воздушный фильтр в шкафу.
  • Не работает вентилятор.
  • Поврежден температурный датчик.
  • Поврежден силовой модуль ПЧ.

Решения:

  • Снизить температуру окружающей среды.
  • Обратитесь к поставщику.

EF (актуально для серии mini PLUS)

Описание: внешняя ошибка управления.

Возможная причина:

  • Ошибка управляющего сигнала на программируемом входе преобразователя.

Решения:

  • Проверить схему подключения внешнего сигнала.
  • Проверить программирование соответствующих входов

CO – обозначение у mini / Co – обозначение у mini PLUS

Описание: нарушение передачи данных.

Возможные причины:

  • Неправильное подсоединение проводов для передачи данных.
  • Неправильно настроены параметры передачи данных.
  • Неподходящий формат передачи данных.

Решения:

  • Проверьте соответствующие соединения.
  • Настройте параметры.
  • Проверьте формат передачи данных, установите соответствие между Мастером сети и ПЧ.

20, 201, 202, 203 – обозначение у серии mini / 20 – обозначение у серии mini PLUS

Описание: отсутствует токовый сигнал обратной связи.

Возможная причина:

  • Обрыв цепи обратной связи.

Решение:

  • Устранить обрыв.
  • Отремонтировать или заменить датчик обратной связи.

nF0, nF1, nF2, nF3 (актуально для серии mini)

Описание: отсутствует сигнал цифровой сети при остановке, при разгоне, при торможении, в рабочем режиме соответственно.

Возможные причины:

  • Время между сообщениями, передаваемыми по цифровой сети, превысило пороговое значение, установленное в параметре PH04.
  • Обрыв цепи цифровой сети.

Решения:

  • Увеличить значение параметра PH04.
  • Увеличить частоту посылки сообщений по цифровой сети.
  • Установить значение параметра PH03 в значение 0.
  • Устранить обрыв.

Err (актуально для серии mini)

Описание: параметр не может быть настроен.

Возможная причина:

  • Параметр не существует или заблокирован.

Решение:

  • Настройка параметра невозможна.

oH0, OH1, OH2, OH3 (актуально для серии mini)

Описание: ложное срабатывание защиты от перегрева при остановке, разгоне, торможении и рабочем режиме соответственно.

Возможные причины:

  • Большие электромагнитные помехи.
  • Неисправность платы управления.

Решение:

  • Установить значение параметра Pi05=110.
  • Заменить плату управления преобразователя.

oH (актуально для серии mini PLUS)

Описание: перегрев силового модуля в ПЧ.

Возможные причины:

  • Высокая температура окружающей среды.
  • Засорен воздушный фильтр в шкафу.
  • Не работает вентилятор.
  • Поврежден температурный датчик.
  • Поврежден силовой модуль ПЧ.

Решения:

  • Снизить температуру окружающей среды.
  • Обратитесь к поставщику.

LP (актуально для серии mini PLUS)

Описание: Обратная связь PID ниже нижнего предела.

Возможные причины:

  • Ошибка датчика обратной связи.
  • Ошибка программирования PID.

Решения:

  • Проверить провода от датчика на «обрыв» и сам датчик.
  • Скорректировать параметры PID.

HP (актуально для серии mini PLUS)

Описание: Обратная связь PID выше верхнего предела.

Возможные причины:

  • Ошибка датчика обратной связи.
  • Ошибка программирования PID.

Решения:

  • Проверить провода от датчика на «обрыв» и сам датчик.
  • Скорректировать параметры PID.

LL (актуально для серии mini PLUS)

Описание: Ошибка «сухой ход».

Возможная причина:

  • Ошибка датчика обратной связи.
  • Ошибка программирования PID.
  • Отсутствует вода в трубопроводе.

Решение:

  • Проверить провода от датчика на «обрыв» и сам датчик.
  • Скорректировать параметры PID.
  • Проверить трубопровод.

SLP (актуально для серии mini PLUS)

Описание: Спящий режим.

Возможная причина:

  • Преобразователь частоты находится в спящем режиме в процессе работы PID регулятора.

Стандартные ошибки и проблемы

  1. Параметр не может быть изменён.

Возможные причины:

  • Параметр заблокирован. Это означает, что в настройках ПЧ была активирована защита от изменения параметров. Для деактивации этой защиты необходимо присвоить параметру Pb18 (у устройств Innovert ISD mini и mini PLUS этот параметр отвечает за блокировку доступа к параметрам). значение «0». В случае, если при работе с mini PLUS невозможно присвоить параметру Pb01, который отвечает за способ установки заданной частоты, определенное значение (канал Х), то это означает, что такое значение уже выставлено по другому каналу и необходимо проверить его настройку, просмотрев значение параметра Pb20 (канал Y).
  • Неправильная передача данных. Для решения этой проблемы необходимо перепроверить соединительные провода и подключить их заново к клеммам, отключив предварительно питание.
  • Двигатель работает. У ПЧ существует защита от изменения значений параметров при работе двигателя, поэтому для изменения параметров необходимо предварительно остановить двигатель.
  1. Перегрев двигателя.

Возможные причины:

  • Температура окружающей среды превышает допустимую. Решение: принятие мер для её понижения
  • Нагрузка на двигатель превышает номинальный вращающий момент. Решение: уменьшить нагрузку, поставить редуктора или заменить двигатель на более мощный.
  • Повреждение изоляции двигателя. Решение: замена двигателя.
  • Большое расстояние между двигателем и ПЧ. Решение: уменьшение расстояния между ПЧ и двигателем, а также установка дросселя переменного тока.
  • «Жёсткий режим» запуска двигателя. При включении двигателя по его обмоткам протекает большой ток. Решение: уменьшение величины максимального кратковременного тока, замена двигателя на более подходящий.
  • Двигатель работает на низкой скорости. Решение: установка понижающего редуктора, чтобы обеспечить работу двигателя на более высокой скорости.
  1. Двигатель не запускается при нажатии кнопки «ПУСК» на внешнем пульте управления.

Возможные причины:

  • Установлен неправильный режим работы. Решение: проверить параметр Pb02, ему должна быть присвоена «1».
  • Нет задания частоты или заданная частота меньше, чем пусковая. Решение: повышение частоты.
  • Двигатель не подключен. Решение: проверка подключения двигателя.
  • Неправильно запрограммирована функция входной клеммы, внешний соединительный провод подключен к другой клемме. Решение: необходимо проверить параметры Pd15 – Pd22 (у ISD mini) или параметры Pd15-Pd18 (у ISD mini PLUS).
  • ПЧ находится под действием защиты. Решение: отключить ПЧ, устранить причину, которая вызвала срабатывание защиты и только после её устранения запустить ПЧ.
  • Двигатель неисправен. Решение: проверка двигателя.
  • ПЧ неисправен: Решение: проверка работы ПЧ на заведомо исправном двигателе, контролируя его фазный ток.
  1. Двигатель вибрирует или шумит.

Возможные причины:

  • Заклинивание ротора двигателя или отсутствие смазки. Решение: проверка нагрузки двигателя, проверка смазки.
  • Резонансная вибрация двигателя. Решение: изменение частоты ШИМ, изменение времени ускорения/торможения, установка антивибрационных прокладок, установка зоны пропуска частоты, совпадающей с резонансной.
  1. Двигатель не работает в режиме реверса.

Возможные причины:

  • Возможность вращения назад у двигателя – заблокирована.

Решение:

  • Параметру Pb04 присвоить значение «1», предварительно уточнив безопасность реверсивного пуска.
  1. Двигатель работает в режиме реверса.

Возможные причины:

  • Перепутан порядок подключения выходных клемм двигателя.
  • Задан соответствующий управляющий сигнал.

Решение:

  • изменение управляющего сигнала.
  • изменение порядка подключения выходных клемм двигателя
  1. Запуск ПЧ нарушает работу других устройств.

Возможные причины:

  • ПЧ выступает в качестве источника электромагнитных помех.

Решения:

  • Уменьшение частоты ШИМ.
  • Правильное заземление ПЧ и двигателя отдельными толстыми медными проводами.
  • Соединение ПЧ и двигателя экранированным кабелем, экран которого должен надёжно соединяться с корпусом двигателя, а с другой стороны кабеля – с монтажной металлической панелью, на которой установлен ПЧ. Панель должна быть надежно заземлена.
  • Установка выходного дросселя переменного тока на силовом выходе ПЧ.
  • Установка специального высокочастотного фильтра на силовом входе ПЧ.
  • Проложить проводку силового кабеля не ближе 10 см от проводки управляющего контура.
  • В качестве управляющей линии использовать экранированные витые пары проводов.
  • Установка ферритового кольца на входные и выходные провода.

Сброс ошибок

Сброс ошибок возможен путём нажатия на кнопку «СБРОС», однако перед этим необходимо удостовериться в том, что ошибка была устранена, а также – в том, что дальнейшая работа не повредит оборудованию.

Коды ошибок частотного преобразователя INVTЧастотные преобразователи относятся к сложной промышленной электронике достаточно дорогой и в тоже время широко распространенной по всему миру. На сегодняшний день трудно себе даже представить какое-либо производство, на котором бы не работало данное промышленное оборудование.

К сожалению, в процессе эксплуатации выходит из строя даже самое надежное промышленное оборудование. В данной статье мы разберем частотный преобразователь INVT, точнее ошибки частотного преобразователя INVT серии GDXXX, коды ошибок и их расшифровка. Частотники в наше время нашли широкое применения в абсолютно всех сферах промышленности управляя как мини моторами в оргтехнике, так и гигантскими двигателями в горнодобывающей промышленности.

Для простоты общения со столь сложной электроникой все частотные преобразователи оснащены небольшими дисплеями с помощью которых выводятся информационные сообщения с кодами ошибок, расшифровав которые можно сразу же узнать причину ее возникновения. Если учесть распространенность данной промышленной электроники, то появляется острая нужда в расшифровке кодов ошибок частотных преобразователей.

Коды ошибок частотного преобразователя INVT серии GDXXX и их расшифровка.

В таблицах ниже приведены все коды ошибок частотного преобразователя INVT и их расшифровка, то есть причина по которой возникла та или иная ошибка.

Внимание, для предотвращения повторного аварийной остановки оборудования, перед сбросом ошибки необходимо устранить причину сбоя и только после этого выполнить сброс кода ошибки частотного преобразователя INVT.

Коды ошибок частотного преобразователя INVT GDXXX

Код ошибки

Тип ошибки

Возможная причина

Способ устранения

OUt1

IGBT

Ошибка фазы — U

  • Время разгона слишком мало.
  • Неисправность GBT.
  • Нет контакта при подключении кабеля.
  • Заземление отсутствует.
  • Увеличьте время разгона АСС.
  • Замените модуль IGBT.
  • Проверьте подключения.
  • Осмотрите внешнее оборудование и устраните неисправности.

OUt2

IGBT

Ошибка фазы — V

OUt3

IGBT

Ошибка фазы — W

OC1

Сверхток при разгоне

  • Время разгона или торможения слишком большое.
  • Напряжение сети велико.
  • Мощность ПЧ слишком мала.
  • Переходные процессы нагрузки или неисправность.
  • Короткое замыкание на землю или потеря фазы
  • Внешнее вмешательство.
  • Увеличить время разгона
  • Проверьте напряжение питания
  • Выберите ПЧ с большей мощностью
  • Проверьте нагрузку и наличие короткого замыкания.
  • Проверьте конфигурацию выхода.
  • Проверить, если есть сильные помехи.

OC2

Сверхток при торможении

OC3

Сверхток при постоянной скорости

OV1

Повышенное напряжение при разгоне

  • Входное напряжение не соответствует параметрам ПЧ.
  • Существует большая энергия торможения (генерация).
  • Проверьте входное напряжение
  • Проверьте время разгона/торможения

OV2

Повышенное напряжение при торможении

OV3

Повышенное напряжение при постоянной скорости

UV

Пониженное напряжение

DC — шины

  • Напряжение питания слишком низкое.
  • Проверьте входное напряжение

OL1

Перегрузка двигателя

  • Напряжение питания слишком низкое.
  • Неверный параметр, номинальный ток двигателя.
  • Большая нагрузка на двигатель.
  • Проверьте входное напряжение
  • Установите правильный ток двигателя
  • Проверьте нагрузку

OL2

Перегрузка ПЧ

  • Разгон слишком быстрый
  • Заклинивание двигателя
  • Напряжение питания слишком низкое.
  • Нагрузка слишком велика.
  • Долгая работа на низкой скорости при векторном управлении
  • Увеличьте время разгона
  • Избегайте перегрузки после останова.
  • Проверьте входное напряжение и мощность двигателя
  • Выберете ПЧ большей мощности.
  • Проверьте правильность выбора двигателя.

OL3

Электрическая перегрузка

  • Предварительная сигнализация перегрузки согласно заданному параметру
  • Проверьте нагрузку и точку предупредительной перегрузки.

SPI

Потеря входных фаз

  • Потеря фазы или колебания напряжения входных фаз R, S, T
  • Проверьте входное напряжение
  • Проверьте правильность монтажа

SPO

Потеря выходных фаз

  • Потеря выходных фаз U, V, W (ассиметричная нагрузка)
  • Проверьте выход ПЧ
  • Проверьте кабель и двигатель

OH1

Перегрев выпрямителя

  • Затор в вентиляционном канале или повреждение вентилятора
  • Температура окружающей среды слишком высока.
  • Слишком большое время запуска.
  • Обратитесь к решению по сверхтоку, см. ОС1, ОС2, ОС3
  • Проверьте воздуховод или замените вентилятор
  • Уменьшите температуру окружающей среды
  • Проверить и восстановить воздухообмен
  • Проверьте мощность нагрузки
  • Замените модуль IGBT
  • Проверить плату управления

OH2

Перегрев IGBT

EF

Внешняя неисправность

  • Клемма SIn
  • Внешняя неисправность
  • Проверьте состояние внешних клемм

CE

Ошибка связи

  • Неправильная скорость в бодах.
  • Неисправность в кабеле связи.
  • Неправильный адрес сообщения.
  • Сильные помехи в связи.
  • Установить правильную скорость
  • Проверьте кабель связи
  • Установить правильный адрес связи.
  • Замените кабель или улучшите защиту от помех.

ItE

Ошибка при обнаружении тока

  • Неправильное подключение платы управления
  • Отсутствует вспомогательное напряжение
  • Неисправность датчиков тока
  • Неправильное измерение схемы.
  • Проверьте разъем
  • Проверьте датчики
  • Проверьте плату управления

tE

Ошибка автонастройки

  • Мощность двигателя не соответствует мощности ПЧ
  • Параметры двигателя неверны.
  • Большая разница между параметрами автонастройки и стандартными параметрами
  • Время автонастройки вышло
  • Установите параметры с шильдика двигателя
  • Уменьшите нагрузку двигателя и повторите автонастройку
  • Проверьте соединение двигателя и параметры.
  • Проверьте, что верхний предел частоты выше 2/3 номинальной частоты.

EEP

Ошибка EEPROM

  • Ошибка контроля записи и чтения параметров
  • Неисправность EEPROM
  • Нажмите STOP/RST для сброса
  • Замените панель управления

PIDE

Ошибка обратной связи

PID

  • Обратная связь PID отключена
  • Обрыв источника обратной связи PID
  • Проверить сигнал обратной связи PID
  • Проверьте источник обратной связи
  • PID

bCE

Неисправен тормозной модуль

  • Неисправность тормозной цепи или обрыв тормозных кабелей
  • Недостаточно мощности внешнего тормозного резистора
  • Проверьте тормозной блок и замените тормозные кабели
  • Увеличить мощность тормозного резистора

ETH1

Ошибка Короткое замыкание 1

  • Короткое замыкание выхода ПЧ на землю.
  • Ошибка в цепи обнаружения тока.
  • Проверьте подключение двигателя
  • Проверьте датчики тока
  • Замените плату управления

ETH2

Ошибка Короткое замыкание 2

  • Короткое замыкание выхода ПЧ на землю.
  • Ошибка в цепи обнаружения тока.
  • Проверьте подключение двигателя
  • Проверьте датчики тока
  • Замените плату управления

dEu

Ошибка Отклонение скорости

  • Слишком большая нагрузка.
  • Проверьте нагрузку. Увеличить время обнаружения.
  • Проверить, что все параметры управления нормальны.

STo

Ошибка Несогласованность

  • Параметры управления не установлены для синхронных двигателей.
  • Параметры автонастройки не подходят.
  • ПЧ не подключен к двигателю.
  • Проверьте нагрузку
  • Проверьте правильность установки параметров управления.
  • Увеличьте время обнаружения несогласованности.

END

Время достигло заводской настройки

  • Фактическое время работы ПЧ превышает внутренний параметр времени работы.
  • Запросите поставщика и настройте заново продолжительность работы.

PCE

Сбой связи с панелью управления

  • Обрыв проводов, подключаемых к панели управления.
  • Провода слишком длинные и подвержены помехам.
  • Существует неисправность цепи в клавиатуре и основной плате.
  • Проверьте провода панели управления.
  • Проверить окружающую среду и устраните источник помех.
  • Проверьте оборудование и запросите проведение сервисного обслуживания.

DNE

Ошибка загрузки параметров

  • Обрыв проводов, подключаемых к панели управления.
  • Провода слишком длинные и подвержены помехам.
  • Ошибка хранения данных в панели управления.
  • Проверьте провода панели управления и убедитесь, есть ли ошибка.
  • Проверьте оборудование и запросите проведение сервисного обслуживания.
  • Повторно загрузите данные в панель управления. В случае повтора обратитесь в сервисную службу компании INVT

LL

Ошибка Электронная недогрузка

  • ПЧ сообщает о предварительном сигнале по недогрузке, согласно установленным значениям.
  • Проверьте нагрузку и недогрузку в предупредительной точке.

E-DP

Ошибка связи по протоколу Profibus

  • Коммуникационный адрес не правильный.
  • Нет согласующего резистора
  • Файлы задания остановлены, нет звука GSD
  • Проверьте настройки связи

E-NET

Ошибка связи по протоколу Ethernet

  • Ethernet- адрес задан неправильно.
  • Не выбраны кабели Ethernet.
  • Сильные помехи от окружающей среды.
  • Проверьте параметры.
  • Проверьте выбор средств коммуникации.
  • Проверить окружающую среду.

E-CAN

Ошибка связи по протоколу CAN

  • Нет звука при подключении
  • Нет согласующего резистора
  • Сообщение не равномерно
  • Проверьте подключение
  • Установите согласующий резистор
  • Не соответствующая скорость передачи данных

Информационная панель частотного преобразователя INVT

Сброс ошибок частотного преобразователя INVT

Сброс ошибок частотного преобразователя INVT GDXXX осуществляется с помощью кнопки STOP/RST, цифровой вход или путем временного отключения питания и повторного включения частотного преобразователя через некоторое время.

К сожалению далеко не все ошибки можно сбросить или исправить самостоятельно, в некоторых случаях придется обратится в специализированный сервисный центр для устранения неисправности частотного преобразователя с последующим сбросом кода ошибки. Благодаря приведённым выше кодам ошибок частотного преобразователя INVT серии GDXXX с и их расшифровкой вы экономите время и точно знаете о возможности самостоятельного сброса ошибки.

Техническое обслуживание частотных преобразователей INVT

Для продления безаварийного срока эксплуатации частотного преобразователя INVT, впрочем, как и любого другого привода, рекомендуется регулярно проводить техническое обслуживание сложного промышленного оборудования. В таблице ниже мы указали желательную периодичность обслуживания частотного преобразователя INVT.

Периодичность техобслуживания преобразователя

Периодичность обслуживания

Сервисная операция

По необходимости

  • Чистка радиатора охлаждения

Регулярно

  • Проверка моментов затяжки клемм ввода/вывода

12 месяцев (если привод хранится)

  • Зарядка конденсаторов

6 – 24 месяца (в зависимости от условий эксплуатации)

  • Проверка состояния клемм I/O и силовых клемм
  • Чистка канала охлаждения
  • Проверка состояния вентилятора охлаждения, проверка наличия коррозии на клеммах ввода/вывода, шинах звена постоянного тока и других поверхностях
  • Проверка состояния фильтров дверей при установке привода в шкаф

5 – 7 лет

  • Замена вентиляторов охлаждения:
  • Основного вентилятора
  • Вентилятора охлаждения шкафа

5 – 10 лет

  • Замена конденсаторов звена постоянного тока

Схемы подключения основных цепей частотного преобразователя INVT серии GDXXX.

Подключение основных цепей ПЧ < 37 кВт

Подключение основных цепей ПЧ > 37 кВт

Подключение основных цепей ПЧ < 37 кВт

Подключение основных цепей ПЧ > 37 кВт

Сброс ошибок и Ремонт частотников в сервисном центре

Компания «Кернел» производит ремонт промышленной электроники и оборудования с 2002 года. За это время мы накопили колоссальный опыт в том числе опыт в ремонте частотных преобразователей. Логотип компании'Кернел'Ремонт подобной промышленной электроники ответственное и сложное занятие, требующие максимальной отдачи, профессионализма и максимально полной материальной базе.

Специалисты нашего сервисного центра уделяют максимальное внимание к качеству исполнения ремонта, программирования и настройке промышленного преобразователя частоты, не зависимо от производителя данного промышленного оборудования. Именно поэтому мы смело даем гарантию на все выполненные работы шесть месяцев.

Ремонт частотного преобразователя INVT производится исключительно с использованием оригинальных запасных частей, на компонентном уровне с применением высокотехнологичного оборудования, квалифицированным персоналом с инженерным образованием.

Если на вашем производстве появились проблемы с частотным преобразователем, которые вы не можете решить самостоятельно, мы всегда рады вам помочь. Обращайтесь в сервисный центр «Кернел». Специалисты нашей компании в минимальные сроки проведут глубокую диагностику и последующий ремонт частотного преобразователя. Оставьте заказ на ремонт оборудования используя форму на сайте, либо свяжетесь с нашими менеджерами, сделать это очень просто.

Как с нами связаться

У вас остались вопросы, связанные с ремонтом, программированием и настройкой частотных преобразователей или другого промышленного оборудования? Задайте их нашим менеджерам. Связаться с ними можно несколькими способами:

Наши контакты

  • Заказав обратный звонок (кнопка в правом нижнем углу сайта)
  • Посредством чата (кнопка расположена с левой стороны сайта)
  • Позвонив по номеру телефона: +7(8482) 79-78-54; +7(917) 121-53-01
  • Написав на электронную почту: 89171215301@mail.ru

Далеко не полный список производителей промышленной электроники и оборудования, ремонтируемой в нашей компании.

В статье дается краткое описание и расшифровка возможных предупреждений и аварийных сигналов в частотном преобразователе младшей серии VEDA VFD VF 51.

Система самодиагностики преобразователя частоты серии VEDA VFD VF-51 постоянно контролирует состояние питания на входе, состояние выходных сигналов, характеристики двигателя, а также другие рабочие параметры системы. Предупреждение или аварийный сигнал не обязательно означают, что проблема связана с самим преобразователем частоты. Во многих случаях они могут оповещать о сбое, связанном с входным напряжением, нагрузкой или температурой двигателя, внешними сигналами или с другими параметрами, контролируемыми внутренней логикой преобразователя частоты.

Таблица 1. Описание кодов ошибок ПЧ VEDA VFD VF-51

 №   Код аварии (ошибки, неисправности, Error) и краткое описание
1 E.SC1 (1) Сбой системы во время разгона
2 E.SC2 (2) Сбой системы во время торможения
3 E.SC3 (3) Сбой системы при постоянной скорости
4 E.SC4 (4) Сбой системы при простое
5 Е.ОС1 (5) Перегрузка по току при разгоне
6 Е.ОС2 (6) Перегрузка по току во время торможения
7 Е.ОС3 (7) Перегрузка по току при постоянной скорости
8 Е.ОС4 (8) Программная перегрузка по току VF-51
9 E. OU1 (9) Перегрузка по напряжению во время разгона
10 E. OU2 (10) Перегрузка по напряжению во время торможения
11 E. OU3 (11) Перегрузка по напряжению при постоянной скорости
12 E.LU (13) Пониженное напряжение
13 E.OL1 (14) Перегрузка электродвигателя
14 E.OL2 (15) Перегрузка 1 преобразователя частоты
15 E.OL3 (16) Перегрузка 2 преобразователя частоты
16 E.OL4 (17) Перегрузка 3 преобразователя частоты
17 E.ILF (18) Обрыв фазы на входе преобразователя частоты
18 E.OLF (19) Обрыв фаз на выходе преобразователя частоты
19 E.OLF1 (20) Обрыв фазы U
20 E.OLF2 (21) Обрыв фазы V
21 E.OLF3 (22) Обрыв фазы W
22 E.OH1 (30) Перегрев модуля выпрямителя
23 E.OH2 (31) Перегрев модуля IGBT
24 E.OH3 (32) Перегрев электродвигателя
25 E.EF (33) Внешняя ошибка
26 E.CE (34) Ошибка связи по Modbus
27 E.HAL1 (35) Смещение ноля фазы U
28 E.HAL2 (36) Смещение ноля фазы V
29 E.HAL3 (38) Смещение ноля фазы W
30 E.HAL (37) Ошибка обнаружения трехфазного тока (сумма токов не равна 0)
31 E.SGxx (40) Короткое замыкание на землю
32 E.FSG (41) Короткое замыкание вентилятора
33 E.PID (42) Обрыв обратной связи ПИД-регулятора
34 E.COP (43) Ошибка копирования параметров
35 E.PG01 (44) Ошибка настройки параметров энкодера
36 E.PG02 (44) Ошибка Z канала энкодера
37 E.PG03 (44) Ошибка проверки вращения энкодера
38 E.PG04 (44) Ошибка подключения энкодера
39 E.PG05 (44) Ошибка ABZ каналов энкодера
40 E.PG06 (44) Ошибка подключения энкодера шпинделя
41 E.PG07 (44) Ошибка Z канала энкодера шпинделя
42 E.PG08 (44) Логическая ошибка Z канала энкодера
43 E.PG09 (44) Логическая ошибка Z канала энкодера шпинделя
44 E.PG10 (44) Прерывание импульса Z канала энкодера
45 E.BRU (50) Ошибка тормозного модуля
46 E.Texx (52) Превышение выходного тока при автоподстройке
47 E.IAE1 (71) Ошибка автоподстройки двигателя 1
48 E.IAE2 (72) Ошибка автоподстройки двигателя 2
49 E.IAE3 (73) Ошибка автоподстройки двигателя 3
50 E.PST1 (74) Ошибка автоподстройки синхронного двигателя 1
51 E.PST2 (75) Ошибка автоподстройки синхронного двигателя 2
52 E.PST3 (76) Ошибка автоподстройки синхронного двигателя 3
53 E.DEF (77) Превышение отклонения по скорости
54 E.SPD (78) Ошибка превышения по скорости
55 E.LD1 (79) Защита нагрузки 1
56 E.LD2 (80) Защита нагрузки 2
57 E.CPU (81) Превышение времени ожидания процессора
58 E.LOC (85) Программное обеспечение
59 E.EEP (86) Ошибка хранилища параметров
60 E.BUS1 (91) Карта расширения А отключена
61 E.BUS2 (92) Карта расширения Б отключена
62 E.BUS3 (93) Ошибка карты расширения CAN
63 E.BUS4 (94) Ошибка карты расширения
64 E.BUS5 (95) Ошибка карты расширения
65 E.BUS6 (96) Отключение карты расширения
66 E.CP1 (97) Ошибка компаратора 1
67 E.CP2 (98) Ошибка компаратора 2
68 E.DAT (99) Ошибка установки параметра
69 E.FA1 (110) Откказ внешнего расширения 1
70 E.FA2 (111) Откказ внешнего расширения 2
71 E.FA3 (112) Откказ внешнего расширения 3
72 E.FA4 (113) Откказ внешнего расширения 4
73 E.FA5 (114) Откказ внешнего расширения 5
74 E.FA6 (115) Откказ внешнего расширения 6
75 E.FA7 (116) Откказ внешнего расширения 7
76 E.FA8 (117) Откказ внешнего расширения 8

Аварийный сигнал (существенная неисправность) выводится в случае отключения преобразователя частоты по срабатыванию системы защиты. Двигатель останавливается выбегом. Система управления преобразователем частоты продолжает работать и контролирует состояние цепей управления преобразователя частоты. После того, как причина ошибки будет устранена, код ошибки можно сбросить и преобразователь частоты снова будет готов к работе. Информация о каждом аварийном событии сохраняется в журнале ошибок.

Таблица 2. Коды предупреждения (раннего оповещения) ПЧ VEDA VFD VF-51

 
 Коды предупреждений
( оповещений, Warning, Alarm) и наименование 
1 A.LU1 (128) Пониженное напряжение во время отключения
2 A.OU (129) Перенапряжение при отключении
3 A.ILF (130) Обрыв фазы на входе преобразователя частоты
4 A.PID (131) Обрыв обратной связи ПИД-регулятора
5 A.EEP (132) Предупреждение об ошибке в чтении и записи параметров
6 A.DEF (133) Превышение в отклонении скорости вращения
7 A.SPD (134) Неверная скорость вращения
8 A.GPS1 (135) Блокировка GPS
9 A.GPS2 (136) Обрыв GPS
10 A.CE (137) Ошибки в работе ModBus
11 A.LD1 (138) Защита нагрузки 1
12 A.LD2 (139) Защита нагрузки 2
13 A.BUS (140) Потеря соединения с картой расширения
14 A.OH1 (141) Перегрев модуля
15 A.OH3 (142) Перегрев электродвигателя
16 A.RUN1 (143) Конфликт команд запуска
17 A.RUN2 (158) Защита от толчкового запуска
18 A.RUN3 (159) Защита от перезапуска
19 A.PA2 (144) Потеря соединения с панелью управления
20 A.COP (145) Ошибка в копировании параметров
21 A.CP1 (146) Предупреждение о выходном значении компаратора 1
22 A.CP2 (147) Предупреждение о выходном значении компаратора 2
23 A.FA1 (150) Предупреждение внешнего расширения 1
24 A.FA2 (151) Предупреждение внешнего расширения 2
25 A.FA3 (152) Предупреждение внешнего расширения 3
26 A.FA4 (153) Предупреждение внешнего расширения 4
27 A.FA5 (154) Предупреждение внешнего расширения 5
28 A.FA6 (155) Предупреждение внешнего расширения 6

Предупреждение (несущественная неисправность) выводится при возникновении ненормальных условий работы, вследствие чего преобразователь частоты может выдать сигнал предупреждения. Предупреждение не влияет на работоспособность преобразователя частоты: двигатель продолжает работу, если запущен или его можно запустить, если он остановлен. Предупреждение сбрасывается автоматически при устранении причины.

Преобразователь частоты может иметь следующие неисправности в процессе использования, поэтому, пожалуйста, обратитесь к следующим методам для простого анализа неисправностей: Нет индикации для включения: Проверка, соответствует ли входная мощность номинальному напряжению данного устройства с помощью мультиметра. Пожалуйста, проверьте и устраните проблемы с питанием, если таковые имеются. Проверка, не поврежден ли трехфазный выпрямительный мост. Если выпрямительный мост был взорван, обратитесь за помощью. Воздушный выключатель отключается при включении питания: проверяется, есть ли заземление или короткое замыкание между входным источником питания, и устраняет проблему. Проверьте, не поврежден ли выпрямительный мост, и, если так, обратитесь в сервисную службу. электродвигатель не вращается после работы преобразователя частоты: Проверьте, есть ли сбалансированное трехфазное выходное напряжение между U, V и W. Если это так, линия электродвигателя или она повреждена, или ротор электродвигателя заблокирован по механическим причинам. Пожалуйста, исключите их. Выходное напряжение U, V и W, но трехфазное несбалансированное, это должно быть из-за повреждения платы привода ПЧ или модуля вывода, поэтому обратитесь за помощью. Если выходное напряжение отсутствует, плата водителя или выходной модуль могут быть повреждены, обратитесь за помощью. Преобразователь частоты с включенным питанием отображается нормально, а воздушный выключатель сработал после срабатывания: Проверьте, нет ли короткого замыкания между выходным модулем. Если это так, пожалуйста, обратитесь в службу поддержки. Проверьте, нет ли короткого замыкания или заземления между выводами электродвигателя. Если так, пожалуйста, исключите это. Если операция отключения происходит время от времени и расстояние между электродвигателем и инвертором относительно велико, рассмотрите возможность добавления реактора переменного тока.

  • Купить частотные преобразователи AE200 YINGSHIDA
  • Инструкция по настройке и подключению частотного преобразователя
  • Список програмируемых функций

Код

Ошибка

Возможная причина

Исправление

ОС1

Перегрузки по току во время ускорения

1. Ускорение слишком быстро.

2. Напряжение в сети низкое.

3. Мощность преобразователя частоты слишком мала.

1. Увеличьте время разгона.

2. Проверьте входное напряжение.

3. Выберите преобразователь частоты на одну ступень больше.

ОС2

Перегрузки по току при замедлении

1. Замедление слишком быстро.

2. Слишком большой момент инерции нагрузки.

3. Мощность преобразователя частоты слишком мала.

1. Увеличьте время замедления.

2. Добавьте соответствующего энергопотребления тормозной системы в сборе.

3. Выберите преобразователь частоты на одну ступень больше.

ОС3

Перегрузки по току при постоянной скорости

1. Повышенные нагрузки.

2. Низкое напряжение сети.

3. Мощность преобразователя частоты слишком мала.

4. Короткое замыкание на выходе.

1. Снизьте нагрузку.

2. Проверьте напряжение сети.

3. Выберите преобразователь частоты на одну ступень больше.

4. Проверьте изоляцию электродвигателя и проводки.

OU1

Перегрузки по току во время ускорения

1. Неправильное входное напряжение.

2. Перезапуск электродвигателя из-за прерывания питания.

1. Проверьте напряжение сети.

2. Избегайте прерывание питания.

OU2

Перегрузки по току во время замедления

1. Замедление слишком быстрое.

2. Инерция нагрузки большая.

3. Неправильное входное напряжение.

1. Увеличьте время замедления.

2. Проверьте напряжение сети.

3. Увеличение энергопотребления тормозных компонентов.

OU3

Перегрузки по току при постоянной скорости

1. Инерция нагрузки большая.

2. Неправильное входное напряжение.

1. Проверьте напряжение сети.

2. Увеличение энергопотребления тормозных компонентов.

UV

Пониженное напряжение на шине

1. Низкое напряжение сети.

2. Внутренний инвертор неисправен.

1. Проверьте напряжение сети.

2. Необходим ремонт в сервисе.

OL1

Перегрузка электродвигателя

1. Низкое напряжение сети.

2. Номинальный ток электродвигателя установлен неправильно.

3. электродвигатель неисправен или нагрузка превышена.

4. Мощность электродвигателя не соответствует.

1. Проверьте напряжение сети.

2. Сброс номинального тока электродвигателя.

3. Проверьте электродвигатель и нагрузку.

4. Установите правильный электродвигатель.

OL2

Перегрузка преобразователя частоты

1. Ускорение слишком быстрое.

2. Произошел перезапуск электродвигателя.

3. Неправильное напряжение сети.

1. Увеличьте время ускорения.

2. Избегайте перезапуска электродвигателя.

3. Проверьте напряжение сети.

4. Выберите преобразователь частоты на ступень выше.

SPO

Отсутствуе выходная фаза

U, V, W фазо-дефицитный выход (серьезная асимметрия нагрузки трехфазная)

1. Проверьте проводку и кабель подключения.

2. Требуется ремонт в сервисе.

OH

Перегрев

1. Кратковременные перегрузки по току.

2. Воздуховод заблокирован или вентилятор поврежден.

3. Окружающая температура слишком высокая.

4. Панель управления неисправна.

1. Не допускайте перегрузок.

2. Прочистите воздуховод и проверьте вентилятор.

3. Снизьте внешнюю температуру.

4. Требуется ремонт в сервисе.

EF

Внешняя неисправность

Нажата внешняя кнопка неисправности.

Проверьте вход внешнего устройства.

CE

Сбой связи

1. Скорость передачи данных установлена неправильно.

2. Ошибка последовательной связи.

3. Связь была прервана на долгое время.

1. Установка соответствующей скорости передачи.

2. Сделайте сброс кнопкой «СТОП».

3. Проверка подключения интерфейса связи.

ITE

Неисправность цепи обнаружения тока

1. Плохое соединение разъема панели управления.

2. Вспомогательный источник питания поврежден.

3. Датчик тока поврежден.

4. Цепь усилителя неисправна.

1. Не допускайте перегрузок.

2. Прочистите воздуховод и проверьте вентилятор.

3. Снизьте внешнюю температуру.

4. Требуется ремонт в сервисе.

TE

Ошибка самообучения мотора

1. Мощность электродвигателя не соответствует мощности преобразователя частоты.

2. Номинальные параметры электродвигателя установлены неправильно.

3. Отклонение между самообучаемыми параметрами и стандартными параметрами слишком велико.

4. Перерыв в самообучении.

1. Выберите другую модель частотного преобразователя.

2. Установка номинальных параметров в соответствии с заводской табличкой электродвигателя.

3. Выключение электродвигателя и его повторная идентификация.

4. Проверка проводки электродвигателя и настройка параметров.

EEP

Ошибка чтения и записи памяти

1. Чтение и запись параметров управления неверно.

2. EEP ROM поврежден.

1. Нажмите кнопку «СТОП» для сброса.

2. Требуется ремонт в сервисе.

PIDE

Ошибка отключения обратной связи ПИД

1. Обратная связь PID отключена.

2. PID источник обратной связи исчез.

1. Проверка линии обратной связи.

2. Проверка источника обратной связи PID.

Ошибки частотных преобразователей: примеры и коды ошибок

Частотные преобразователи — это электронные или электротехнические устройства, предназначенные для изменения и регулировки частоты электрического напряжения. Сфера их использования очень широка: насосные станции, системы тепло- и водоснабжения, линии производства, конвейеры, лифты, центрифуги, мельницы, металлургические агрегаты, буровое оборудование и т. д.

Использование частотных преобразователей на промышленных объектах дает следующие преимущества:

  • Возможность отказаться от регулирующего оборудования: дросселей, вариаторов, редукторов и др. Это существенно упрощает работу механической системы, снижает расходы на эксплуатацию и повышает ее надежность.
  • Плавный разгон управляемого двигателя, защищающий его от механических ударов и пусковых токов, что продлевает срок его службы.
  • Частотные преобразователи в паре с асинхронными двигателями можно использовать в качестве альтернативы для приводов постоянного тока.
  • Максимально рациональное регулирование скорости контролируемых двигателей и связанных с этим технологических процедур.
  • Экономия электроэнергии, благодаря устранению ее неоправданных трат.

Но, несмотря на свою надежность и эффективность, частотные преобразователи, как и любые электронные приборы, подвержены износу. Инженерная компания 555 специализируется на ремонте промышленной электроники, и в частности — на устранении ошибок частотных преобразователей. Наши специалисты готовы отремонтировать вышедшее из строя оборудование в кратчайшие сроки.

Основные виды и причины неисправностей

Опознать неисправности частотников позволяют коды ошибок, высвечивающиеся на мониторе устройства. Каждая такая комбинация символов указывает на совершенно конкретную проблему, и это помогает специалистам выработать правильную стратегию ремонта. Для начала рассмотрим типовые виды ошибок частотных преобразователей:

  1. Over Current или OC. Данный сигнал на мониторе устройства свидетельствует о его перегрузке. Если подобная проблема возникла при тестовом запуске, необходимо проверить соответствие токов регулятора и электрической машины, а также исправность электроцепей управляемого двигателя. Следует учесть, что некоторые модели частотников высвечивают ошибку Over Current при торможении, работе и запуске электродвигателя.
  2. Over Heat или ОН. Это сообщение указывает на превышение номинально допустимой температуры частотного преобразователя. Проще говоря — на его перегрев. Устранить проблему можно посредством чистки внутреннего вентилятора или установки дополнительной вентиляционной системы в бокс, где располагается преобразователь. В качестве профилактики следует размещать частотник в месте, гарантирующем эффективный отвод тепла.
  3. Over Load или OL. Такая ошибка преобразователя может быть вызвана двумя обстоятельствами: превышением на валу момента силы или перегревом управляемого двигателя. Чтобы устранить проблему, необходимо выполнить корректную настройку тепловой защиты. Для этого во время программирования устройства нужно задать требуемую величину тока и время срабатывания защитной функции.
  4. Low Voltage или LV. Ошибка высвечивается при снижении напряжения питания или обрыве фаз (одной или двух). Существует два варианта решения этой проблемы: «насильственная» остановка двигателя или настройка его работы в однофазном режиме.
  5. Over Voltage или OV. Такую надпись можно увидеть на мониторе при замедлении вращения двигателя. Для устранения неисправности необходимо воспользоваться одним из трех способов: переводом устройства в режим генератора, активацией тормозного резистора или перенастройкой системы защиты от повышенного напряжения.

Среди других типовых неисправностей преобразователя следует выделить вращение двигателя в неправильном направлении, невозможность его запуска, проблемы с торможением и разгоном и т. д. Каждое повреждение имеет под собой конкретные причины. Например, если двигатель разгоняется очень медленно, скорее всего, дело в срабатывании функции токоограничения в момент разгона.

В число наиболее распространенных причин неисправностей входят:

  1. Заводской брак. Как правило, фабричные дефекты дают о себе знать в течение гарантийного срока. Поэтому для их устранения следует обращаться к поставщику или в брендовый сервисный центр.
  2. Ошибки при монтаже. Чаще всего причиной неисправностей становится некорректная сборка схемы привода или установка частотника в неподходящем месте.
  3. Нарушение норм эксплуатации. Регламент технического обслуживания изложен в инструкции, прилагаемой к устройству. Игнорирование регламента может привести к выходу из строя полупроводниковых элементов, перегреванию частотного регулятора и другим неисправностям.
  4. Несоответствие частотного преобразователя условиям его эксплуатации. Основные критерии выбора частотника — электрические характеристики двигателя, исполнение, набор функций и т. д. Несоответствие параметров условиям его эксплуатации приводит к некорректной работе устройства, выходу из строя и многочисленным поломкам.

Теперь поговорим об ошибках преобразователя частоты более подробно и предметно. В качестве примера рассмотрим привод известного китайского бренда INVT ELECTRIC CO, серии GDXXX. Предлагаем вашему вниманию таблицу, в которой представлены коды ошибок устройства, их расшифровка, вероятные причины неисправностей, а также способы их устранения.

Код ошибки Расшифровка Вероятные причины Способы устранения
OUt1, 2, 3 Ошибка фазы. Отсутствие заземления или контакта при подсоединении кабеля; слишком маленькое время разгона. Увеличение времени разгона;
замена модуля IGBT; устранение неисправностей внешнего оборудования; переподключение кабеля.
OC1, 2, 3 Токовая перегрузка при разгоне, торможении или постоянной скорости. Чрезмерное время торможения или разгона; слишком высокое напряжение в сети; недостаточная мощность привода;
потеря фазы или короткое замыкание «на землю»; воздействие внешнего фактора.
Сокращение времени разгона;
оптимизация питающего напряжения;
приобретение привода с более высокой мощностью; проверка конфигурации выхода;
устранение внешних помех.
OV1, 2, 3 Сверхнапряжение при разгоне, торможении или постоянной скорости. Напряжение на входе не соответствует параметрам привода;
чрезмерная энергия торможения.
Проверка входного напряжения;
оптимизация времени торможения/разгона.
UV Слишком низкое напряжение шины. Пониженное напряжение питания. Проверка и оптимизация входного напряжения.
OL1 Перегрузка электродвигателя. Слишком низкое питающее напряжение;
неверно заданные параметры тока;
чрезмерная нагрузка на электродвигатель.
Проверка входного напряжения;
настройка правильных параметров тока в двигателе;
оптимизация нагрузки.
OL2 Перегрузка преобразователя частоты. Чрезмерно быстрый разгон;
остановка двигателя;
заниженное питающее напряжение;
сверхнагрузка;
длительная работа двигателя на низкой скорости.
Увеличение времени разгона;
снижение нагрузки на двигатель;
проверка мощности двигателя и входного напряжения;
приобретение привода с более высокой мощностью;
замена двигателя.
OL3 Перегрузка по электричеству. Сигнализация перегрузки в соответствии с заданными параметрами. Проверка нагрузки и точки перегрузки.
SPI Потеря фаз входа. Потеря колебания или фазы напряжения трех входных фаз. Проверка и оптимизация входного напряжения и/или правильности монтажа.
SPO Потеря фаз выхода. Асимметричная нагрузка. Проверка выхода, двигателя и кабеля.
OH1 Перегревание выпрямителя. Неисправность вентилятора или засорение вентиляционного канала;
слишком высокая температура воздуха в помещении;
чрезмерно затянутый запуск устройства.
Замена вентилятора и проверка воздуховода;
снижение температуры окружающей среды;
проверка и восстановление воздухообмена;
оптимизация мощности нагрузки;
замена модуля IGBT;
ремонт платы управления.
EF Неисправность внешних элементов. Повреждение клеммы SIn и/или других внешних клемм. Замена пришедших в негодность клемм.
CE Проблемы со связью. Некорректная скорость в бодах;
повреждение кабеля связи;
неверно заданный адрес сообщения;
серьезные помехи в кабеле.
Оптимизация скорости в бодах;
проверка кабеля связи;
настройка правильного адреса сообщения;
замена кабеля или оптимизация защиты от помех.
ItE Проблемы с обнаружением тока. Некорректное подключение платы управления;
отсутствие вспомогательного напряжения;
выход из строя индикаторов тока.
Проверка разъема, датчиков и платы управления.
tE Ошибка автоматической настройки. Несоответствие мощностей двигателя и частотного преобразователя;
неверно заданные параметры электродвигателя;
серьезная разница между стандартными параметрами и параметрами автоматической настройки;
выход времени на автонастройку.
Установка параметров, указанных на шильдике двигателя;
снижение нагрузки на двигатель;
проверка параметров двигателя и его соединения;
установка верхнего предела частоты на уровень «выше 2/3 номинальной частоты».
bCE Неисправность тормозного модуля. Разрыв тормозных коммуникаций или некорректная работа тормозной цепи;
недостаток производительности внешнего тормозного резистора.
Проверка тормозного модуля и замена тормозных кабелей;
принудительное повышение мощности тормозного резистора.
ETH1, 2 Короткое замыкание Замыкание выхода преобразователя частоты «на землю»;
неисправность в цепи определения тока.
Проверка подключения двигателя и индикаторов тока;
замена платы управления.
dEu Отклонение скоростного режима. Избыточная нагрузка. Оптимизация нагрузки и увеличение времени обнаружения;
проверка и при необходимости корректировка параметров управления.
STo Несогласованность параметров. Отсутствие параметров управления для синхронных электродвигателей;
некорректно заданные параметры автоматической настройки;
отсутствие подключения частотника к двигателю.
Корректировка нагрузки на двигатель;
установка корректных параметров управления;
увеличение времени определения несогласованности.
PCE Обрыв связи с блоком управления. Повреждение проводов, обеспечивающих подключение к блоку управления;
помехи в проводах, связанные с внешним фактором;
некорректное функционирование цепи в основной плате и/или в клавиатуре.
Замена проводов блока управления;
проверка внешней среды и устранение источника помех;
выполнение комплексного сервисного обслуживания устройства.
END Сброс времени до заводских настроек. Фактическое время функционирования преобразователя не соответствует внутреннему параметру продолжительности работы. Корректировка настроек времени.
DNE Проблема с загрузкой параметров. Повреждение проводов, подключаемых к блоку управления;
помехи в проводах;
ошибка в базе данных панели управления.
Замена проводов блока управления;
сервисное обслуживание частотного преобразователя;
повторная загрузка данных в панель управления.

Преимущества ремонта в инженерной компании 555

  • Огромный опыт в ремонте частотных преобразователей разных моделей и марок.
  • Команда профессиональных специалистов.
  • Экономия до 70 % средств по сравнению с приобретением нового оборудования.
  • Оперативное выполнение работ (максимальный срок ремонта — 15 дней).
  • Бесплатная консультация и предварительный осмотр для определения ремонтопригодности привода.
  • Доступные цены и оплата только по результату работы.
  • Гарантия на отремонтированное оборудование — 12 месяцев.

Обращайтесь к нам из любой точки России, через сайт или по телефону. Промышленная электроника — это очень сложное и специфичное оборудование, которое следует доверять только профессионалам.

Мы ремонтируем:

Компания ООО «Барс-Гидравлик Групп»

Компания ООО «Барс-Гидравлик Групп» на протяжении нескольких лет успешно сотрудничает с ООО «Инженерная компания 555» в вопросах ремонта сложного промышленного оборудования. За время работы наш партнер зарекомендовал себя с самой лучшей стороны. Заказы выполняются в кротчайшие сроки при соблюдении высокого качества работ. Организация приема и выдачи заказов четкая. Гарантийные обязательства выполняются в полном объеме.

Выражаем благодарность Вашим специалистам за профессионализм и оперативное решение поставленных задач.

Особенно хочется отметить высокую клиентоориентированность персонала Вашей компании, готовность помочь в самых сложных ситуациях.

Мы высоко ценим сложившиеся между нашими компаниями открытые и доверительные партнерские отношения и искренне желаем «Инженерной компании «555» долгих лет успеха и процветания.

Читать весь
отзыв

ООО «СоюзМашМеталл»

ООО «Инженерная компания «555» оказывала нашей компании услуги по ремонту электродвигателей и проявила пунктуальность, аккуратность и ответственность в работе.

Результат выполненных работ говорит о качественном оборудовании и высококвалифицированных кадрах.

Сотрудники компании готовы выполнить новые для себя виды работ и оказать консультационные услуги, что характеризует их как профессионалов своего дела.

Рекомендуем ООО «ИК «555» как ответственного и надежного поставщика услуг.

Читать весь
отзыв

ООО «РСК»

Сообщаем, что наша организация сотрудничает с ООО «Инженерная компания «555» с мая 2016 года по настоящее время.

За этот период мы обращались к услугам компании более 10 раз.

Благодаря серьезному и квалифицированному подходу сотрудников ООО «Инженерная компания «555» ремонтные работы произведены качественно с учетом сроков, и обеспечены гарантийным сопровождением.

Планируем в дальнейшем работать с ООО «Инженерная компания «555»

Читать весь
отзыв

ОАО «Октябрьский электровагоноремонтный завод»

Уважаемый Дмитрий Васильевич!

ОАО «Октябрьский электровагоноремонтный завод» успешно работает с ООО «Инженерная компания «555» несколько лет, очень довольны данным сотрудничеством. В работе компании наибольшую ценность для нас представляет готовность работать на условиях, удобных Заказчику, качественный ремонт оборудования в заявленные сроки и самое главное, финансовая защищенность Заказчика. В инженерной компании работают внимательные, доброжелательные сотрудники, готовые в любой момент решить проблему Заказчика. Мы рады, что выбрали ООО «Инженерная компания «555» в качестве партнера. Гарантируем дальнейшее сотрудничество!

Читать весь
отзыв

ЗАО «ОХТИНСКОЕ»

ЗАО «Охтинское» выражает глубокую признательность и истинную благодарность ООО Инженерной компании «555» за качественную работу компании по ремонту сложного оборудования промышленной электроники, оперативность и технически грамотное отношение к работе в течении всего периода сотрудничества.

Мы надеемся на дальнейшее успешное развитие деловых отношений в сфере ремонта промышленной электроники.

Читать весь
отзыв

Преимущества сотрудничества с нами

Оплата только за результат — работающий блок

Гарантия на работоспособность блока целиком 12 месяцев

Срок ремонта от 5 до 15 дней

Бесплатный предварительный осмотр на предмет ремонтопригодности

Не вносим конструктивных изменений

Ремонт на компонентном уровне

Наша лаборатория расположена в Санкт-Петербурге, но обратиться за помощью вы можете из любой точки России.
Закажите обратный звонок или наберите в рабочее время многоканальный телефон

+7 (800) 555-89-01 (звонок по России бесплатный).

Расскажите о своей проблеме и получите инструкцию к дальнейшим действиям.

  • Page 1
    Manual No. YEG-TOE-S616-56.1-OY VARISPEED E7 Variable Torque Frequency Inverter USER’S MANUAL…
  • Page 2: Table Of Contents

    Safety Precautions and Instructions for Use ……….VIII EMC Compatibility ………………X Line Filters ………………..XII Registered Trademarks …………….XV Handling Inverters …………..1-1 Varispeed E7 Introduction …………….1-2 Varispeed E7 Applications………………..1-2 Varispeed E7 Models…………………. 1-2 Confirmations upon Delivery ……………1-4 Checks……………………..1-4 Nameplate Information ………………..

  • Page 3
    Checks ……………………. 2-26 Installing and Wiring Option Cards …………2-27 Option Card Models ………………… 2-27 Installation ……………………2-27 Digital Operator and Modes…………3-1 Digital Operator ………………. 3-2 Digital Operator Display ………………..3-2 Digital Operator Keys ………………… 3-2 Modes ………………….3-4 Inverter Modes ………………….. 3-4 Switching Modes ………………….
  • Page 4
    Protection Function Parameters: L …………….5-32 N: Special Adjustments………………..5-38 Digital Operator Parameters: o ………………5-39 T: Motor Autotuning ………………… 5-42 U: Monitor Parameters ………………..5-43 Setting Values that Change with the V/f Pattern Selection (E1-03) ……5-48 Factory Settings that Change with the Inverter Capacity (o2-04) …….. 5-49 Parameter Settings by Function……….
  • Page 5
    Restarting Operation After Transient Error (Auto Restart Function) ……6-44 Inverter Protection ………………6-46 Inverter Overheat Protection ………………6-46 Input Phase Loss Detection Level…………….6-46 Ground Fault Protection ………………..6-47 Cooling Fan Control ………………… 6-47 Setting the Ambient Temperature …………….6-48 OL2 Characteristics at Low Speed …………….
  • Page 6
    Troubleshooting ………………7-12 If Parameters Cannot Be Set………………7-12 If the Motor Does Not Operate ………………7-13 If the Direction of the Motor Rotation is Reversed …………7-14 If the Motor Does Not Put Out Torque or If Acceleration is Slow……..7-14 If the Motor Operates at Higher Speed than the Frequency Reference …….
  • Page 8: Warnings

    Warnings CAUTION Cables must not be connected or disconnected, nor signal tests carried out, while the power is switched on. The Varispeed DC bus capacitor remains charged even after the power has been switched off. To avoid an electric shock hazard, disconnect the frequency inverter from the mains before carrying out maintenance.

  • Page 9: Safety Precautions And Instructions For Use

    Safety Precautions and Instructions for Use General Please read these safety precautions and instructions for use thoroughly before installing and operating this inverter. Also read all of the warning signs on the inverter and ensure they are never damaged or removed. Live and hot inverter components may be accessible during operation.

  • Page 10
    This also applies to equipment with the CE mark. It is the responsibility of the manufacturer of the system or machine to ensure conformity with EMC limits. Your supplier or Omron Yaskawa Motion Control representative must be contacted when using leakage cur- rent circuit breaker in conjunction with frequency inverters.
  • Page 11: Emc Compatibility

    EMC Compatibility Introduction This manual was compiled to help system manufacturers using OMRON YASKAWA Motion Control (OYMC) frequency inverters design and install electrical switchgear. It also describes the measures necessary to comply with the EMC Directive. The manual’s installation and wiring instructions must therefore be fol- lowed.

  • Page 12
    The grounding surfaces must be highly conductive bare metal. Remove any coats of varnish and paint. –Ground the cable shields at both ends. –Ground the motor of the machine. You can find further informations in the document EZZ006543 which can be ordered at Omron Yaskawa Motion Control.
  • Page 13: Line Filters

    Line Filters Recommended Line Filters for Varispeed E7 Inverter Model Line Filter Current Weight Dimensions Varispeed E7 Model 55011 (kg) W x D x H Class* CIMR-E7Z40P4 B, 25 m* CIMR-E7Z40P7 B, 25 m* 3G3RV-PFI3010-SE 141 x 46 x 330…

  • Page 14
    Inverter Model Line Filters Current Weight Dimensions Varispeed E7 Type 55011 (kg) W x D x H Class CIMR-E7Z20P4 B, 25 m* CIMR-E7Z20P7 3G3RV-PFI3010-SE B, 25 m* 141 x 45 x 330 B, 25 m* CIMR-E7Z21P5 CIMR-E7Z22P2 3G3RV-PFI3018-SE B, 25 m*…
  • Page 15
    Installation inverters and EMC filters L1 L3 Ground Bonds ( remove any paint ) Line Inverter Filter Load Cable Length as short as possible Metal Plate Motor cable screened Ground Bonds ( remove any paint )
  • Page 16: Registered Trademarks

    Registered Trademarks The following registered trademarks are used in this manual. DeviceNet is a registered trademark of the ODVA (Open DeviceNet Vendors Association, Inc.). • InterBus is a registered trademark of Phoenix Contact Co. • ControlNet is a registered trademark of ControlNet International, Ltd. •…

  • Page 18: Handling Inverters

    Handling Inverters This chapter describes the checks required upon receiving or installing an Inverter. Varispeed E7 Introduction…………1-2 Confirmations upon Delivery……….1-4 Exterior and Mounting Dimensions ……..1-8 Checking and Controlling the Installation Site …..1-11 Installation Orientation and Space ……..1-12 Removing and Attaching the Terminal Cover ……1-13…

  • Page 19: Varispeed E7 Introduction

    4-1, Trial Operation. Varispeed E7 Models es: 200 V and 400 V. The maximum motor capacities The Varispeed E7 Series includes Inverters in two voltage class vary from 0.55 to 300 kW (42 models). Models Table 1.1 Varispeed E7 Models Specifications Varispeed E7 (Always specify through the protective structure when ordering.)

  • Page 20
    Table 1.1 Varispeed E7 Models Specifications Varispeed E7 (Always specify through the protective structure when ordering.) Maximum Voltage Motor Output Open Chassis Enclosed Wall-mounted Class Capacity kW Capacity Basic Model Number (IEC IP00) (IEC IP20, NEMA 1) CIMR-E7Z CIMR-E7Z 0.55…
  • Page 21: Confirmations Upon Delivery

    Use a screwdriver or other tools to check for tightness. If you find any irregularities in the above items, contact the agency from which you purchased the Inverter or your Omron Yaskawa Motion Control representative immediately. Nameplate Information There is a nameplate attached to the side of each Inverter. The nameplate shows the model number, specifica- tions, lot number, serial number, and other information on the Inverter.

  • Page 22
    The model number of the Inverter on the nameplate indicates the specification, voltage class, and maximum motor capacity of the Inverter in alphanumeric codes. CIMR – E7 Z 2 0 P4 Inverter Varispeed E7 Specification Max. Motor Capacity European Standard 0.55 kW…
  • Page 23: Component Names

    Component Names Inverters of 18.5 kW or Less The external appearance and component names of the Inverter are shown in 1.4. The Inverter with the ter- minal cover removed is shown in Fig 1.5 Top protective cover (Part of Enclosed Wall- mounted Type (IEC IP20, NEMA Type 1) Mounting hole Front cover…

  • Page 24
    Inverters of 22 kW or More The external appearance and component names of the Inverter are shown in Fig 1.6 The Inverter with the ter- minal cover removed is shown in Fig 1.7 Mounting holes Inverter cover Cooling fan Front cover Digital Operator Nameplate Terminal cover…
  • Page 25: Exterior And Mounting Dimensions

    Exterior and Mounting Dimensions Open Chassis Inverters (IP00) Exterior diagrams of the Open Chassis Inverters are shown below. 200 V Class Inverters of 22 or 110 kW 200 V/400 V Class Inverters of 0.55 to 18.5 kW 400 V Class Inverters of 22 to 160 kW 400 V Class Inverters of 185 to 300 kW Fig 1.8 Exterior Diagrams of Open Chassis Inverters…

  • Page 26: Enclosed Wall-Mounted Inverters (Nema1)

    Enclosed Wall-mounted Inverters (NEMA1) Exterior diagrams of the Enclosed Wall-mounted Inverters (NEMA1) are shown below. Grommet 200 V/400 V Class Inverters of 0.55 to 18.5 kW 200 V Class Inverters of 22 or 75 kW 400 V Class Inverters of 22 to 160 kW Fig 1.9 Exterior Diagrams of Enclosed Wall-mounted Inverters…

  • Page 27
    Table 1.3 Inverter Dimensions (mm) and Masses (kg) of E7 inverters from 0.4 to 160kW Caloric Value Dimensions (mm) Max. Appli- Open Chassis (IP00) Enclosed Wall-mounted (NEMA1) Cool- Total Voltage cable Heat Appr Appr Class Motor Metho Exter Inter- nting Gen- Output Hole…
  • Page 28: Checking And Controlling The Installation Site

    Checking and Controlling the Installation Site Install the Inverter in the installation site described below and maintain optimum conditions. Installation Site Install the Inverter under the following conditions in a pollution degree 2 environment. Type Ambient Operating Temperature Humidity -10 to + 40 °C Enclosed wall-mounted 95% RH or less (no condensation) -10 to + 45 °C…

  • Page 29: Installation Orientation And Space

    Installation Orientation and Space Install the Inverter vertically so as not to reduce the cooling effect. When installing the Inverter, always pro- vide the following installation space to allow normal heat dissipation. 30 mm min. 120 mm min. 30 mm min. 50 mm min.

  • Page 30: Removing And Attaching The Terminal Cover

    Removing and Attaching the Terminal Cover Remove the terminal cover to wire cables to the control circuit and main circuit terminals. Removing the Terminal Cover Inverters of 18.5 kW or Less Loosen the screw at the bottom of the terminal cover, press in on the sides of the terminal cover in the direc- tions of arrows 1, and then lift up on the terminal in the direction of arrow 2.

  • Page 31: Removing/Attaching The Digital Operator And

    Removing/Attaching the Digital Operator and Front Cover Inverters of 18.5 kW or Less To attach optional cards or change the terminal card connector, remove the Digital Operator and front cover in addition to the terminal cover. Always remove the Digital Operator from the front cover before removing the front cover.

  • Page 32
    Removing the Front Cover Press the left and right sides of the front cover in the directions of arrows 1 and lift the bottom of the cover in the direction of arrow 2 to remove the front cover as shown in the following illustration. Fig 1.14 Removing the Front Cover (Model CIMR-E7Z45P5 Shown Above) Mounting the Front Cover After wiring the terminals, mount the front cover to the Inverter by performing the steps to remove the front…
  • Page 33
    1. Do not remove or attach the Digital Operator or mount or remove the front cover using methods other than those described above, otherwise the Inverter may break or malfunction due to imperfect contact. 2. Never attach the front cover to the Inverter with the Digital Operator attached to the front cover. Imperfect contact can result.
  • Page 34: Inverters Of 22 Kw Or More

    Inverters of 22 kW or More For inverters with an output of 22 kW or more, remove the terminal cover and then use the following proce- dures to remove the Digital Operator and front cover. Removing the Digital Operator Use the same procedure as for Inverters with an output of 18.5 kW or less. Removing the Front Cover Lift up at the location label 1 at the top of the control circuit terminal card in the direction of arrow 2.

  • Page 36: Wiring

    Wiring This chapter describes wiring terminals, main circuit terminal connections, main circuit terminal wiring specifications, control circuit terminals, and control circuit wiring specifications. Connections to Peripheral Devices……..2-2 Connection Diagram …………..2-3 Terminal Block Configuration……….2-5 Wiring Main Circuit Terminals ……….2-6 Wiring Control Circuit Terminals ……….2-19 Wiring Check…………….2-26 Installing and Wiring Option Cards ……..2-27…

  • Page 37: Connections To Peripheral Devices

    Connections to Peripheral Devices Examples of connections between the Inverter and typical peripheral devices are shown in 2.1. Power supply Molded-case circuit breaker Magnetic con- tactor (MC) AC reactor for power factor improvement Input noise filter DC reactor for power factor improvement Inverter Ground…

  • Page 38: Connection Diagram

    The connection diagram of the Inverter is shown in 2.2. When using the Digital Operator, the motor can be operated by wiring only the main circuits. DC reactor to improve input power factor (optional) Short-circuit bar Main contactor Varispeed E7 Fuse Motor 3-phase power R/L1 U/T1 supply CIMR-…

  • Page 39: Circuit Descriptions

    Circuit Descriptions Refer to the numbers indicated in 2.2. These circuits are hazardous and are separated from accessible surfaces by protective separation. These circuits are separated from all other circuits by protective separation consisting of double and reinforced insulation. These circuits may be interconnected with SELV (or equivalent) or non- SELV circuits, but not both.

  • Page 40: Terminal Block Configuration

    Terminal Block Configuration The terminal arrangements are shown in Fig 2.3 2.4. Control circuit terminals Main circuit terminals Charge indicator Ground terminal Fig 2.3 Terminal Arrangement (200 V/400 V Class Inverter of 0.4 kW) Control Control circuit circuit terminals terminals Charge indicator Main circuit…

  • Page 41: Wiring Main Circuit Terminals

    Wiring Main Circuit Terminals Applicable Wire Sizes and Closed-loop Connectors Select the appropriate wires and crimp terminals from Table 2.1 Table 2.2. Refer to instruction manual TOE-C726-2 for wire sizes for Braking Units and Braking Resistor Units. Table 2.1 200 V Class Wire Sizes Recom- Possible Inverter…

  • Page 42
    Table 2.1 200 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 70 to 95 R/L1, S/L2, T/L3, 1 U/T1, 17.6 to 22.5 (2/0 to 4/0) (2/0) V/T2, W/T3, R1/L11, S1/L21, T1/L31…
  • Page 43
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) R/L1, S/L2, T/L3, 2, B1, B2, 1.5 to 4 U/T1, V/T2, W/T3 E7Z40P4 1.2 to 1.5 (14 to 10)
  • Page 44
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 35 to 50 R/L1, S/L2, T/L3, 1, U/T1, V/T2, W/ 9.0 to 10.0 (2 to 1/0) T3, R1/L11, S1/L21, T1/L31 10 to 16…
  • Page 45
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 150 × 2P R/L1, S/L2, T/L3 (300 × 2P) 120 × 2P U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L33 (250 ×…
  • Page 46: Main Circuit Terminal Functions

    Main Circuit Terminal Functions Main circuit terminal functions are summarized according to terminal symbols in Table 2.3. Wire the termi- nals correctly for the desired purposes. Table 2.3 Main Circuit Terminal Functions (200 V Class and 400 V Class) Model: CIMR-E7Z Purpose Terminal Symbol 200 V Class…

  • Page 47: Main Circuit Configurations

    CIMR-E7Z4022 to 4055 CIMR-E7Z2022, 2030 Power Control Power Control supply circuits supply circuits CIMR-E7Z4075 to 4300 CIMR-E7Z2037 to 2110 Power Control Power Control supply circuits supply circuits Note:Consult your Omron Yaskawa Motion Control representative before using 12-phase rectification.

  • Page 48: Standard Connection Diagrams

    Standard Connection Diagrams Standard Inverter connection diagrams are shown in 2.5. These are the same for both 200 V Class and 400 V Class Inverters. The connections depend on the Inverter capacity. CIMR-E7Z20P4 to 2018 and 40P4 to 4018 CIMR-E7Z2022, 2030, and 4022 to 4055 Braking Resistor Braking Resistor Unit (optional)

  • Page 49: Wiring The Main Circuits

    Wiring the Main Circuits This section describes wiring connections for the main circuit inputs and outputs. Wiring Main Circuit Inputs Observe the following precautions for the main circuit power supply input. Installing Fuses To protect the inverter, it is recommended to use semiconductor fuses like they are shown in the table below. Table 2.5 Input Fuses FUSE Inverter Type…

  • Page 50
    Installing a Moulded-case Circuit Breaker When connecting the power input terminals (R/L2, S/L2, and T/L3) to the power supply using a moulded-case circuit breaker (MCCB) observe that the circuit breaker is suitable for the Inverter. Choose an MCCB with a capacity of 1.5 to 2 times of the inverter’s rated current. •…
  • Page 51
    Wiring the Output Side of Main Circuit Observe the following precautions when wiring the main output circuits. Connecting the Inverter and Motor Connect output terminals U/T1, V/T2, and W/T3 respective to the motor lead wires U, V, and W. Check that the motor rotates forward with the forward run command. Switch over any two of the output termi- nals to each other and reconnect if the motor rotates in reverse with the forward run command.
  • Page 52
    Installing a Thermal Overload Relay Contact for Motor Protection This Inverter has an electronic thermal protection function to protect the motor from overheating. If, however, more than one motor is operated with one Inverter or a multi-polar motor is used, always install a thermal relay (THR) between the Inverter and the motor and set L1-01 to 0 (no motor protection).
  • Page 53
    200 V and 400 V Class Inverters with 0.4 to 18.5 kW Output Capacity LKEB Braking CDBR Braking Resistor Unit Unit Thermal protector Inverter trip contact Thermal overload relay trip contact 200 V and 400 V Class Inverters with 22 kW or higher Output LKEB Braking CDBR Braking…
  • Page 54: Wiring Control Circuit Terminals

    Wiring Control Circuit Terminals Wire Sizes For remote operation using analog signals, keep the control line length between the Analog Operator or oper- ation signals and the Inverter to 50 m or less, and separate the lines from main power lines or other control cir- cuits to reduce induction from peripheral devices.

  • Page 55
    Straight Solderless Terminals for Signal Lines Models and sizes of straight solderless terminal are shown in the following table. Table 2.8 Straight Solderless Terminal Sizes Model Manufacturer Wire Size mm (AWG) 0.25 (24) AI 0.25 — 8YE 12.5 0.5 (20) AI 0.5 — 8WH 0.75 (18) AI 0.75 — 8GY…
  • Page 56: Control Circuit Terminal Functions

    Control Circuit Terminal Functions The functions of the control circuit terminals are shown in Table 2.9. Use the appropriate terminals for the cor- rect purposes. Table 2.9 Control Circuit Terminals with default settings Signal Name Function Signal Level Type Forward run/stop command Forward run when ON;…

  • Page 57
    Fig 2.11 * 3. When driving a reactive load, such as a relay coil with DC power supply, always insert a flywheel diode as shown in Flywheel diode The rating of the flywheel diode Coil must be at least as high as the cir- External power: 1 A max.
  • Page 58
    The settings of switch S1 and jumper CN15 are described in the following table. Name Function Setting RS-485 and RS-422 terminating resis- OFF: No terminating resistance S1-1 ON: Terminating resistance of 110 Ω tance V: 0 to 10 V (internal resistance: 20 kΩ) S1-2 Input method for analog input A2 I: 4 to 20 mA (internal resistance: 250 Ω)
  • Page 59: Control Circuit Terminal Connections

    Control Circuit Terminal Connections Connections to Inverter control circuit terminals are shown in 2.14. Varispeed E7 CIMR-E7Z47P5 ≈ ≈ Forward Run/Stop Fault contact output 250 VAC, 1 A max. Reverse Run/Stop 30 VDC, 1 A max. External fault Fault reset…

  • Page 60: Control Circuit Wiring Precautions

    Control Circuit Wiring Precautions Observe the following precautions when wiring control circuits. Separate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, • 2, and 3) and other high-power lines. Separate wiring for control circuit terminals MA, MB, MC, M1, M2, M3, and M4 (contact outputs) from •…

  • Page 61: Wiring Check

    Wiring Check Checks Check all wiring after wiring has been completed. Do not perform continuity check on control circuits. Per- form the following checks on the wiring. Is all wiring correct? • Have no wire clippings, screws, or other foreign material been left? •…

  • Page 62: Installing And Wiring Option Cards

    Installing and Wiring Option Cards Option Card Models Option cards for field bus communications can be mounted in the Inverter like shown in 2.15. Table 2.11 lists the type of Option Cards and their specifications. Table 2.11 Option Cards Card Model SI-N1/ DeviceNet communications card…

  • Page 64: Digital Operator And Modes

    Digital Operator and Modes This chapter describes Digital Operator displays and functions, and pro- vides an overview of operating modes and switching between modes. Digital Operator…………..3-2 Modes ………………3-4…

  • Page 65: Digital Operator

    Digital Operator This section describes the displays and functions of the Digital Operator. Digital Operator Display The key names and functions of the Digital Operator are described below. Drive Mode Indicators FWD: Lights up when a forward run command is input.

  • Page 66
    Table 3.1 Key Functions Name Function Selects the rotation direction of the motor when the Inverter is being FWD/REV Key operated from the Digital Operator. Sets the active digit when programming user parameters. Shift/RESET Key Also acts as the Reset key when a fault has occurred. Selects menu items, sets user parameter numbers, and increments set Increment Key values.
  • Page 67: Modes

    Modes This section describes the Inverter’s modes and switching between modes. Inverter Modes The Inverter’s user parameters and monitoring functions are organized in groups called modes that make it easier to read and set user parameters.The Inverter is equipped with 5 modes. The 5 modes and their primary functions are shown in the Table 3.17.

  • Page 68: Switching Modes

    Switching Modes The mode selection display will appear when the MENU key is pressed from a monitor or setting display. Press the MENU key from the mode selection display to switch between the modes. Press the DATA/ENTER key from the mode selection display to monitor data and from a monitor display to access the setting display.

  • Page 69: Drive Mode

    Drive Mode The Drive mode is the mode in which the Inverter can be operated. The following monitor displays are possi- ble in drive mode: The frequency reference, output frequency, output current, and output voltage, as well as fault information and the fault history. When b1-01 (Reference selection) is set to 0, the frequency can be changed from the frequency setting display using the Increment, Decrement, and Shift/ keys.

  • Page 70: Quick Programming Mode

    Quick Programming Mode In quick programming mode, the parameters required for Inverter trial operation can be monitored and set. Parameters can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET keys to change the frequency. The user parameter will be written and the monitor display will be returned to when the DATA/ENTER key is pressed after changing the setting.

  • Page 71: Advanced Programming Mode

    Advanced Programming Mode In advanced programming mode all Inverter parameters can be monitored and set. Parameters can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET keys to change the parameter. The user parameter will be written and the display will return to monitor display when the DATA/ENTER key is pressed after changing the setting.

  • Page 72
    Setting User Parameters Below the procedure to change C1-01 (Acceleration Time 1) from 10 s to 20 s is shown. Table 3.3 Setting User Parameters in Advanced Programming Mode Step Digital Operator Display Description Power supply turned ON. MENU Key pressed to enter drive mode. MENU Key pressed to enter quick program- ming mode.
  • Page 73: Verify Mode

    Verify Mode Verify mode is used to display any parameters that have been changed from their default settings in a pro- gramming mode or by autotuning. “None” will be displayed if no settings have been changed. Even in verify mode, the same procedures can be used to change settings as they are used in the programming modes.

  • Page 74: Autotuning Mode

    Autotuning Mode Autotuning automatically measures and sets the motor line-to-line resistance of the motor and motor cable to compensate the voltage drop and thereby to achieve the best performance. Example of Operation Set the motor rated output power (in kW) and the motor rated current, specified on the motor nameplate and then press the RUN key.

  • Page 76: Trial Operation

    Trial Operation This chapter describes the procedures for trial operation of the Inverter and provides an example of trial operation. Trial Operation Procedure…………4-2 Trial Operation ……………4-3 Adjustment Suggestions …………4-11…

  • Page 77: Trial Operation Procedure

    Trial Operation Procedure Perform trial operation according to the following flowchart. START Installation Wiring Set power supply voltage. Turn ON power Confirm status Select operating Basic settings method. (Quick programming mode) Set E1-03. V/f default: 200V/50Hz (400V/50Hz) Motor cable over 50 m or heavy load possibly causing motor to stall or overload?

  • Page 78: Trial Operation

    Trial Operation The procedure for the trial operation is described in order in this section. Application Confirmation First, confirm the application before using the Inverter. It is designed for: Fan, blower, pump • Setting the Power Supply Voltage Jumper (400 V Class Inverters of 75 kW or Higher) The power supply voltage jumper must be set for 400 V Class Inverters of 75 kW or higher.

  • Page 79: Power On

    Power ON Confirm all of the following items and then turn ON the power supply. Check that the power supply is of the correct voltage. • 200 V class: 3-phase 200 to 240 VDC, 50/60 Hz • 400 V class: 3-phase 380 to 480 VDC, 50/60 Hz •…

  • Page 80: Checking The Display Status

    Checking the Display Status After normal power up without any faults the operator display will show the following: The frequency reference monitor is dis- Display for normal operation played in the data display section. When a fault has occurred, the details of the fault will be displayed instead of the above display. In that case, refer to Chapter 7, Troubleshooting.

  • Page 81
    Table 4.1 Basic Parameter Settings : Must be set. : Set as required. Setting Factory Parameter Class Name Description Page Number Range Setting Sets the carrier frequency. The factory Depends Carrier frequency 5-20 C6-02 setting and setting range depends on the 0 to F on setting selection…
  • Page 82: Selecting The V/F Pattern

    Selecting the V/f pattern Set either one of the fixed patterns (0 to D) in E1-03 (V/f Pattern Selection) or set F in E1-03 to specify a • user-set pattern as required for the motor and load characteristics in E1-04 to E1-13 in advanced program- ming mode.

  • Page 83: Application Settings

    Digital Operator Displays during Autotuning The following displays will appear on the Digital Operator during autotuning. Digital Operator Display Description Motor rated power and current: T1-02 and T1-04 The autotuning start display will appear when all set- tings through T1-04 have been completed. The A.TUNE and DRIVE indicators will be lit.

  • Page 84: No-Load Operation

    No-load Operation This section describes trial operation in which the motor is in no-load state, that means the machine is not con- nected to the motor. To avoid failures caused due to the wiring of the control circuit it’s recommended to use the LOCAL mode.

  • Page 85: Check And Recording User Parameters

    Check and Recording User Parameters Use verify mode (i.e., when the VERIFY indicator on the Digital Operator lights up) to check user parameters that have been changed for trial operation and record them in a user parameter table. Any user parameters that have been changed by autotuning will also be displayed in verify mode. If required, the copy function (parameters o3-01 and o3-02 displayed in advanced programming mode) can be used to copy the changed settings from the inverter to a recording area in the Digital Operator.

  • Page 86: Adjustment Suggestions

    Adjustment Suggestions If hunting, vibration, or other problems originated by the control system occur during trial operation, adjust the parameters listed in the following table according to the control method. This table lists the most com- monly used user parameters only. Name (Parameter Factory Set- Recommended…

  • Page 88: User Parameters

    User Parameters This chapter describes all user parameters that can be set in the Inverter. User Parameter Descriptions……….5-2 Digital Operation Display Functions and Levels ….5-3 User Parameter Tables…………5-10…

  • Page 89: User Parameter Descriptions

    User Parameter Descriptions This section describes the contents of the user parameter tables. Description of User Parameter Tables User parameter tables are structured as shown below. Here b1-01 (Frequency Reference Selection) is used as an example. Change Param- MEMO- Setting Factory during Access…

  • Page 90: Digital Operation Display Functions And Levels

    Digital Operation Display Functions and Levels The following figure shows the Digital Operator display hierarchy for the Inverter. Function Page MENU Drive Mode Status Monitor Parameters 5-43 Fault Trace 5-46 Inverter can be operated and its Fault History 5-47 status can be displayed. Initialize Mode 5-10 User-specified Setting Mode…

  • Page 91: User Parameters Available In Quick Programming Mode

    User Parameters Available in Quick Programming Mode The minimum user parameters required for Inverter operation can be monitored and set in quick programming mode. The user parameters displayed in quick programming mode are listed in the following table. These, and all other user parameters, are also displayed in advanced programming mode.

  • Page 92
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets P-control proportional gain. 0.00 Proportional b5-02 P-control is not performed when the set- 1.00 1A6H gain (P) ting is 0.00. 25.00 Sets I-control integral time. 0.0 to b5-03 Integral (I) time…
  • Page 93
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the unit for b5-19, U1-38 and U1-24 0: 0.01 Hz 1: 0.01% (the maximum output fre- quency E1-04 is taken as 100%. 2 –…
  • Page 94
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the acceleration time to accelerate Acceleration C1-01 from 0 Hz to the maximum output fre- 200H time 1 quency. 0.0 to 10.0 s 6000.0 Sets the deceleration time to decelerate Deceleration…
  • Page 95
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion 0: Stop (Operation follows the frequency reference.) Operation when 1: Operation continues at the frequency, L4-05 frequency refer- set in parameter L4-06. 0 or 1 49DH ence is missing Frequency reference loss means that the…
  • Page 96
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the brightness on the optional LCD operator (JVOP-160-OY). 0: light o1-05 LCD-Focus 0 to 5 509H 3: normal 5: dark Selects the monitor that is displayed and 2nd Monitor o1-07 locked in the second line of the operator…
  • Page 97: User Parameter Tables

    User Parameter Tables A: Setup Settings Initialize Mode: A1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Used to select the language dis- played on the Digital Operator JVOP-160-OY only. 0: English 1: Japanese Language selec-…

  • Page 98
    User-set Parameters: A2 The parameters set by the user are listed in the following table. Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Used to select the function for each of the user specified parameters.
  • Page 99: Application Parameters: B

    Application Parameters: b Operation Mode Selections: b1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the frequency reference input method. 0: Digital Operator Reference source b1-01 1: Control circuit terminal (ana- 0 to 3 180H selection…

  • Page 100
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the source of frequency refer- ence for HAND operation. HAND Fref b1-12 0: Digital Operator 0 or 1 01E0 – Source* 1: Control Circuit Terminal (ana- log input) * This parameter is effective only, if the HOA operator JVOP-162 is used.
  • Page 101
    Speed Search: b3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Enables/disables the speed search function for the RUN command and sets the speed search method. 0:Disabled, speed calculation 1: Enabled, speed calculation 2: Disabled, current detection 3: Enabled, current detection Speed Calculation:…
  • Page 102
    Timer Function: b4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the timer function output ON- delay time (dead time) for the timer Timer function 0.0 to b4-01 function input, in 1-second units. 0.0 s 1A3H 6-83…
  • Page 103
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: No detection of PI feedback loss. 1: Detection of PI feedback loss. Operation continues during Selection of PI detection, the fault contact is b5-12 feedback signal 0 to 2…
  • Page 104
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the feedback level at which 0 to b5-24 Wake-Up Level the inverter wakes up from snooze 1E6H 6-84 operation. Sets the PI setpoint boost when the snooze mode is activated.
  • Page 105: Tuning Parameters: C

    Tuning Parameters: C Acceleration/Deceleration: C1 Change Param- MEMO- Setting Factory during Access eter Name Description BUS Reg- Page Range Setting Opera- Level Number ister tion Sets the acceleration time to accel- Acceleration 4-11 C1-01 erate from 0 Hz to the 200H time 1 6-15…

  • Page 106
    S-Curve Acceleration/Deceleration: C2 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion When the S-curve characteristic time is set, the accel time will increase by only half of the S-curve characteristic times S-curve charac- at start and end.
  • Page 107
    Carrier Frequency: C6 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion Selects the carrier frequency. Carrier fre- 4-11 C6-02 Select F to enable detailed settings 0 to F 224H quency selection using parameters C6-03 to C6-05.
  • Page 108: Reference Parameters: D

    Reference Parameters: d Preset Reference: d1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Frequency 0.00 d1-01 Sets the frequency reference. 280H reference 1 Sets the frequency reference when Frequency 0.00 d1-02 multi-step speed command 1 is ON…

  • Page 109
    Jump Frequencies: d3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the center values of the jump frequencies in Hz. d3-01 Jump frequency 1 0.0 Hz 294H 6-23 This function is disabled when the jump frequency is set to 0 Hz.
  • Page 110: Motor Parameters: E

    Motor Parameters: E V/f Pattern: E1 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion Sets the Inverter input voltage. 155 to Input voltage set- 200 V E1-01 This setting is used as a reference value 300H 6-96 ting…

  • Page 111
    Motor Setup: E2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the motor rated current. This set value will become the ref- 0.32 to Motor rated cur- erence value for motor protection 1.90 A 6-32 E2-01…
  • Page 112: Option Parameters: F

    Option Parameters: F Communications Option Cards: F6 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the stopping method for com- munications errors. 0: Deceleration to stop using the Operation selec- deceleration time in C1-02 F6-01 tion after commu-…

  • Page 113: Terminal Function Parameters: H

    Terminal Function Parameters: H Multi-function Digital Inputs: H1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Terminal S3 H1-01 Multi-function digital input 1 0 to 6F 400H – function selection Terminal S4 H1-02 Multi-function digital input 2…

  • Page 114
    Setting Function Page Value Analog frequency reference sample/hold 6-57 External fault 20 to 2F 6-60 Input mode: NO contact/NC contact, Detection mode: Normal/during operation PI control integral reset (reset when reset command is input or when stopped during PI control) 6-84 PI control integral hold (ON: Hold) 6-84…
  • Page 115
    Setting Function Page Value Inverter operation ready 6-62 READY: After initialization or no faults During DC bus undervoltage (UV) detection 6-62 During baseblock (NO contact, ON: during baseblock) 6-62 Frequency reference source selection (ON: Frequency reference from Operator) 6-62 Run command source selection status (ON: Run command from Operator) 6-62 Overtorque/undertorque detection 1 NO (NO contact, ON: Overtorque/undertorque detection) 6-30…
  • Page 116
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Page Range Setting Opera- Level Register tion Sets the input level when terminal -100.0 Bias (terminal A2 is 0 V (4 mA/0 mA) accord- H3-11 0.0% 41AH 6-21 ing to the 100% value of the func- +100.0 tion set in parameter H3-09.
  • Page 117
    Multi-function Analog Outputs: H4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Monitor selec- Sets the number of the monitor H4-01 tion (terminal item to be output (U1- ) at ter- 1 to 53 41DH 6-64…
  • Page 118
    MEMOBUS Communications: H5 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0 to 20 H5-01 Station address Sets the Inverter’s node address. 425H 6-66 Sets the baud rate for MEMOBUS communications.
  • Page 119: Protection Function Parameters: L

    Protection Function Parameters: L Motor Overload: L1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets whether the motor overload function is enabled or disabled at electric thermal overload relay. 0: Disabled Motor protection 1: General-purpose motor protec-…

  • Page 120
    Power Loss Ride Through: L2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Disabled (DC bus undervoltage (UV1) detection) 1: Enabled (Restarted when the power returns within the time set in L2-02.
  • Page 121
    Stall Prevention: L3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Disabled (Acceleration as set. With a heavy load, the motor may stall.) 1: Enabled (Acceleration stopped when L3-02 level is exceeded. Stall prevention Acceleration starts again when L3-01…
  • Page 122
    Reference Detection: L4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Effective when «f agree 1», Speed agreement 0.0 to «Frequency detection 1» or «Fre- L4-01 0.0 Hz 499H 6-25 detection level 200.0 quency detection 2″…
  • Page 123
    Torque Detection: L6 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Overtorque/undertorque detec- tion disabled. 1: Overtorque detection only with speed agreement; operation continues (warning is output). 2: Overtorque detected continu- ously during operation;…
  • Page 124
    Hardware Protection: L8 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the detection temperature for the Inverter overheat detection pre- alarm in °C. Overheat pre- 50 to 95 °C* L8-02 4AEH 6-46…
  • Page 125: N: Special Adjustments

    N: Special Adjustments Hunting Prevention Function: N1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Hunting-prevention function Hunting-preven- disabled N1-01 tion function 0 or 1 580H 6-28 1: Hunting-prevention function selection enabled Hunting-preven-…

  • Page 126: Digital Operator Parameters: O

    Digital Operator Parameters: o Monitor Select: o1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the number of the 3rd. monitor item to be displayed in the Drive o1-01 Monitor selection 6 to 53 500H 6-104…

  • Page 127
    Multi-function Selections: o2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the Digital Operator Local/ Remote key LOCAL/ 0: Disabled o2-01 REMOTE key 0 or 1 505H 6-105 1: Enabled (Switches between the enable/disable Digital Operator and the param- eter settings b1-01, b1-02.)
  • Page 128
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 1: American Spec. 2: Europe Spec. o2-09 Initialize Mode 1 or 5 50DH 4: PV-A Spec. 5: PV-E Spec. Set the initial value of the fan oper- Fan operation ation time.
  • Page 129: T: Motor Autotuning

    T: Motor Autotuning Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0.40 Motor output Sets the output power of the motor 0.00 to T1-02 702H power in kilowatts. 650.00 0.32 to Motor rated cur- Sets the rated current of the motor 1.90 A…

  • Page 130: U: Monitor Parameters

    U: Monitor Parameters Status Monitor Parameters: U1 Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register Frequency refer- Monitors/sets the frequency ref- 10 V: Max. frequency 0.01 U1-01 ence erence value.* (0 to + 10 V possible) 10 V: Max.

  • Page 131
    Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register Inverter operating status. 1: Zero speed 1: Reverse 1: Reset signal input U1-12 Operation status (Cannot be output.) – 1: Speed agree 1: Inverter ready 1: Minor fault 1: Major fault Monitors the total operating time…
  • Page 132
    Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register 0.01 U1-38 PI setpoint PI setpoint 10 V: 100% PI setpoint Shows MEMOBUS errors. 1: CRC error 1: Data length error Not used (always 0) 1: Parity error MEMOBUS…
  • Page 133
    Fault Trace: U2 Param- Output Signal Level During MEMO- Min. eter Name Description Multi-Function Analog Out- Unit Number Register U2-01 Current fault The content of the current fault. – U2-02 Last fault The error content of the last fault. – Reference frequency at The reference frequency when the 0.01…
  • Page 134
    Fault History: U3 Param- MEMO- Output Signal Level During Min. eter Name Description Multi-Function Analog Output Unit Number Register U3-01 Last fault The error content of 1st last fault. – The error content of 2nd last U3-02 Second last fault –…
  • Page 135: Setting Values That Change With The V/F Pattern Selection (E1-03)

    Setting Values that Change with the V/f Pattern Selection (E1-03) 200 V and 400 V Class Inverters of 0.4 to 1.5 kW Parameter Number Unit Factory Setting E1-03 E1-04 50.0 60.0 60.0 72.0 50.0 50.0 60.0 60.0 50.0 50.0 60.0 60.0 90.0 120.0…

  • Page 136: Factory Settings That Change With The Inverter Capacity (O2-04)

    Factory Settings that Change with the Inverter Capacity (o2-04) 200 V Class Inverters Parame- ter Num- Name Unit Factory Setting – Inverter Capacity 0.75 o2-04 kVA selection – Energy-saving coeffi- b8-04 – 288.20 223.70 169.40 156.80 122.90 94.75 72.69 70.44 63.13 cient Carrier frequency selec-…

  • Page 137
    400 V Class Inverters Parame- ter Num- Name Unit Factory Setting – Inverter Capacity 0.75 o2-04 kVA selection – Energy-saving coeffi- b8-04 – 576.40 447.40 338.80 313.60 245.80 236.44 189.50 145.38 140.88 126.26 cient Carrier frequency selec- C6-02 – tion E2-01 Motor rated current 1.00…
  • Page 138
    Parame- ter Num- Name Unit Factory Setting – Inverter Capacity o2-04 kVA selection – Energy-saving coeffi- b8-04 – 30.13 30.57 27.13 21.76 cient Carrier frequency selec- C6-02 – tion E2-01 Motor rated current 270.0 310.0 370.0 500.0 E2-03 Motor no-load current 70.0 81.0 96.0…
  • Page 140: Parameter Settings By Function

    Parameter Settings by Function Carrier Frequency Selection ……….6-2 Frequency Reference …………6-4 Run Command……………6-8 Stopping Methods …………..6-10 Acceleration and Deceleration Characteristics ….6-15 Adjusting Frequency References………6-21 Speed Limit (Frequency Reference Limit Function)…..6-24 Frequency Detection…………6-25 Improved Operating Efficiency ……….6-27 Machine Protection …………..6-29 Automatic Restart …………..6-37 Inverter Protection…………..6-46 Input Terminal Functions…………6-50 Output Terminal Functions ………..6-61…

  • Page 141: Carrier Frequency Selection

    Carrier Frequency Selection Setting the Carrier Frequency Using the following parameters the carrier frequency setting can be fitted to the applications requirements. Related Parameters Changes Setting Factory During Access Param- Name Details Range Setting Opera- Level eter No. tion? Selects the carrier frequency. Carrier frequency selec- C6-02 0 to F…

  • Page 142
    Carrier Frequency C6-03 Output frequency x C6-05 x K* C6-04 Output frequency E1-04 Max. Output Frequency * K is the coefficient determined by the set value in C6-03. C6-03 ≥ 10.0 kHz: K=3 10.0 kHz > C6-03 ≥ 5.0 kHz: K=2 5.0 kHz >…
  • Page 143: Frequency Reference

    Frequency Reference This section explains how to input the frequency reference. Selecting the Frequency Reference Source Set parameter b1-01 to select the frequency reference source. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Set the frequency reference source…

  • Page 144
    2-Step Switching: Master/Auxiliary If 2-step switching between master and auxiliary speed frequencies is performed, input the master speed fre- quency reference to control circuit terminal A1, and input the auxiliary speed frequency reference to A2. When terminal S3 (multi-step speed command 1) is OFF, terminal A1 input (master speed frequency refer- ence) will be the Inverter frequency reference, and when terminal S3 is ON, terminal A2 input (auxiliary speed frequency reference) will be the Inverter frequency reference.
  • Page 145: Using Multi-Step Speed Operation

    Using Multi-Step Speed Operation With Varispeed-E7 series Inverters, you can change the speed to a maximum of 5 steps, using 4 multi-step fre- quency references, and one jog frequency reference. The following example of a multi-function input terminal function shows a 5-step operation using multi-step references 1 and 2 and jog frequency selection functions.

  • Page 146
    Connection Example and Time Chart The following diagram shows a time chart and control circuit terminal connection example during a 9-step operation. Inverter Forward/stop Reverse/stop Error reset Multi-step command 1 Multi-step command 2 Jog frequency External fault Digital input neutral Fig 6.7 Control Circuit Terminal During 5-step Operation Frequency reference 4…
  • Page 147: Run Command

    Run Command This section explains input methods for the run command. Selecting the Run Command Source Set parameter b1-02 to select the source for the run command. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…

  • Page 148
    Performing Operations Using 3-Wire Control When any parameter from H1-01 to H1-05 (multi-function digital input terminals S3 to S7) is set to 0, termi- nals S1 and S2 are used for a 3-wire control, and the multi-function input terminal that has been set to 0 works as a forward/reverse selection command terminal.
  • Page 149: Stopping Methods

    Stopping Methods This section explains methods of stopping the Inverter. Selecting the Stopping Method when a Stop Command is Input There are four methods of stopping the Inverter when a stop command is input: Deceleration to stop • Coast to stop •…

  • Page 150
    Deceleration to Stop If the stop command is input (the run command is turned OFF) when b1-03 is set to 0, the motor decelerates to stop according to the deceleration time that has been set. (Factory setting: C1-02 (Deceleration Time 1)). If the output frequency when decelerating to stop falls below b2-01, the DC injection brake will be applied using the DC current set in b2-02 for the time set in b2-04.
  • Page 151: Using The Dc Injection Brake

    Coast to Stop with Timer If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 3, the Inverter output is switched off so that the motor coasts to stop. After the stop command is input, run commands are ignored until the time T has elapsed.

  • Page 152: Motor Pre-Heat Function

    Motor Pre-heat Function The motor pre-heat function can be used to prevent e.g. moisture inside the motor due to condensation. The pre-heat current can be set in b2-09. Using a digital input which is set for motor pre-heat (H1- =60) the function can be enabled or disabled.

  • Page 153: Using An Emergency Stop

    Using an Emergency Stop Set a multi-function input terminal (H1- ) to 15 or 17 (emergency stop) to decelerate to stop using the deceleration time set in C1-09. If inputting the emergency stop with an NO contact, set the multi-function input terminal (H1- ) to 15, and if inputting the emergency stop with an NC contact, set the multi-function input terminal (H1-…

  • Page 154: Acceleration And Deceleration Characteristics

    Acceleration and Deceleration Characteristics This section explains the acceleration and deceleration characteristics of the Inverter. Setting Acceleration and Deceleration Times Acceleration time indicates the time to increase the output frequency from 0% to 100% of the maximum out- put frequency (E1-04). Deceleration time indicates the time to decrease the output frequency from 100% to 0% of (E1-04).

  • Page 155
    Switching Acceleration and Deceleration Time Automatically Use this setting when you want to switch acceleration/deceleration time automatically using the output fre- quency. When the output frequency reaches the set value in C1-11, the Inverter switches the acceleration/deceleration time automatically as shown in the following diagram. Set C1-11 to a value other than 0.0 Hz.
  • Page 156: Preventing The Motor From Stalling During Acceleration (Stall Prevention During Acceleration Function)

    Setting Example The S-curve characteristic when switching operation (forward/reverse) is shown in the following diagram. Forward Reverse Output frequency Fig 6.18 S-curve Characteristic during Operation Switching Preventing the Motor from Stalling During Acceleration (Stall Prevention During Acceleration Function) The Stall Prevention During Acceleration function prevents the motor from stalling if a heavy load is applied to the motor, or sudden rapid acceleration is performed.

  • Page 157
    Time Chart The following figure shows the frequency characteristics when L3-01 is set to 1. Output current Stall level during acceleration L3-02 85% of L3-02 Time Output frequency *1 The acceleration rate is lowered *2 The acceleration rate is stopped to reduce the output current *3 The acceleration is restarted Time Fig 6.19 Time Chart for Stall Prevention During Acceleration…
  • Page 158: Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration Function)

    Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration Function) This function automatically lengthens the deceleration time with respect to the DC-bus voltage to avoid over- voltage tripping. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…

  • Page 159
    Setting Precautions The stall prevention level during deceleration differs depending on the inverter rated voltage and input • voltage. Refer to the following table for details. Inverter Rated/Input Voltage Stall Prevention Level during Deceleration (V) 200 V class E1-01 ≥ 400 V 400 V class E1-01 <…
  • Page 160: Adjusting Frequency References

    Adjusting Frequency References Adjusting Analog Frequency References The analog reference values can be adjusted using the gain and bias functions for the analog inputs. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Frequency reference terminal Sets the frequency as a percentage of the maximum…

  • Page 161
    Refer to Fig 6.22 for adjusting the signal using the gain and bias functions. Frequency reference Frequency reference Terminal A2 input Terminal voltage (current) input voltage 0V (4 mA/0 mA) Terminal A2 input Terminal A1 input Fig 6.22 Terminals A1 and A2 Inputs Adjusting Frequency Bias Using an Analog Input When parameter H3-09 is set to 0 (Frequency Bias), the frequency equivalent to the terminal A2 input voltage is added to A1 as a bias.
  • Page 162: Operation Avoiding Resonance (Jump Frequency Function)

    Operation Avoiding Resonance (Jump Frequency Function) This function allows the prohibition or “jumping” of certain frequencies within the Inverter’s output fre- • quency range so that the motor can operate without resonant oscillations caused by some machine systems. It can also be used for deadband control. •…

  • Page 163: Speed Limit (Frequency Reference Limit Function)

    Speed Limit (Frequency Reference Limit Function) This section explains how to limit the motor speed. Limiting Maximum Output Frequency If you do not want the motor to rotate above a given frequency, use parameter d2-01. Set the upper limit value of the frequency reference as a percentage, taking E1-04 (Maximum Output Fre- quency) to be 100%.

  • Page 164: Frequency Detection

    Frequency Detection Speed Agreement Function There are four different types of frequency detection methods available. The digital multifunction outputs M1 to M4 can be programmed for this function and can be used to indicate a frequency detection or agreement to any external equipment.

  • Page 165
    Time Charts The following table shows the time charts for each of the speed agreement functions. L4-01: Speed Agree Level Related parameter L4-02: Speed Agree Width Agree 1 Freq. Ref. L4-02 Output Frequency Agree Freq. Ref. L4-02 Agree (Multi-function output setting = 2) Agree 1 (ON at the following conditions during frequency agree) L4-02…
  • Page 166: Improved Operating Efficiency

    Improved Operating Efficiency This section explains functions for improving motor operating efficiency. Torque Compensation for Sufficient Torque at Start and Low-speed Operation The torque compensation function detects a rising motor load, and increases the output torque. The inverter calculates the motor primary loss voltage and adjusts the output voltage (V) to compensate insuf- ficient torque at startup and during low-speed operation.

  • Page 167: Hunting-Prevention Function

    Hunting-Prevention Function The hunting-prevention function suppresses hunting when the motor is operating with a light load. If high response has the priority to vibration suppression this function should be disabled (N1-01 = 0). Related Parameters Change Param- Setting Factory during Access eter Name…

  • Page 168: Machine Protection

    Machine Protection Preventing Motor Stalling During Operation Stall prevention during operation prevents the motor from stalling by automatically lowering the Inverter’s output frequency when a transient overload occurs while the motor is operating at a constant speed. If the Inverter output current continues to exceed the setting in parameter L3-06 for 100 ms or longer, the motor speed is reduced.

  • Page 169: Detecting Motor Torque

    Detecting Motor Torque If an excessive load is applied to the machinery (overtorque) or the load suddenly drops (undertorque), you can output an alarm signal to one of the multi-function output terminal M1-M2 or M3-M4. To use the overtorque/undertorque detection function, set B or 17 (overtorque/undertorque detection NO/NC) in one of the parameter H2-01 and H2-02 (multi-function output terminals M1-M2 and M3-M4 function selec- tion).

  • Page 170
    L6-01 Set Value and Operator Display The relationship between alarms displayed on the Digital Operator when overtorque or undertorque is detected and the setting in L6-01 is shown in the following table. Operator Function Overtorque/ Under- Value torque Detection 1 Overtorque/undertorque detection disabled.
  • Page 171: Motor Overload Protection

    Motor Overload Protection The motor can be protected from overload using the Inverter’s built-in electronic thermal overload relay func- tion. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the motor rated current of motor 1. 0.32 to 1.90 A This set value becomes the base value for motor…

  • Page 172
    Setting Motor Protection Operation Time (L1-02) Set the motor protection operation time in L1-02. The motor protection operation time is the time for that the motor can handle a 150% overload when it was running with the rated load before (i.e. operating temperature was reached before applying the 150% over- load).
  • Page 173: Motor Overheat Protection Using Ptc Thermistor Inputs

    Motor Overheat Protection Using PTC Thermistor Inputs This function provides a motor overheating protection using a thermistor (PTC characteristic – Positive Tem- perature Coefficient) that is built into the windings of each motor phase. Related Parameters Change Param- Setting Factory during Access eter…

  • Page 174
    Operation during Motor Overheating The operation when the motor overheats can be selected using the parameters L1-03 and L1-04. Set the motor temperature input filter time parameter in L1-05. If the motor overheats, the OH3 and OH4 error codes will be displayed on the Digital Operator.
  • Page 175: Limiting Motor Rotation Direction And Output Phase Rotation

    Limiting Motor Rotation Direction and Output Phase Rotation If the motor reverse rotation is prohibited, a reverse run command will not be accepted, even if it is input. Use this setting for applications in which reverse motor rotation can cause problems (e.g., fans, pumps, etc.) It is also possible to change the output phase order by changing b1-04 to 2 or 3.

  • Page 176: Automatic Restart

    Automatic Restart This section explains functions for continuing or automatically restarting Inverter operation after a momentary power loss. Restarting Automatically After Momentary Power Loss After a momentary power loss, the Inverter can be restarted automatically to continue motor operation. To restart the Inverter after power is recovered, set L2-01 to 1 or 2. If L2-01 is set to 1, the inverter will restart, when power is recovered within the time set in L2-02.

  • Page 177: Speed Search

    Speed Search The speed search function finds the actual speed of a motor that is coasting without control, and then starts smoothly from that speed. It is also activated after momentary power loss detection when L2-01 is set to enabled. Related Parameters Change Param-…

  • Page 178
    Multi-function Digital Inputs Set Value Function External search command 1 OFF: Speed search disabled (Start from lowest output frequency) ON: Speed calculation (Calculates the motor speed, and starts search from calculated speed) Current detection (Starts speed search from maximum output frequency) External search command 2 OFF: Speed search disabled (Start from lowest output frequency) ON: Speed calculation (Calculates the motor speed, and starts search from calculated speed) (Same operation as…
  • Page 179
    Speed Search Selection The speed search method can be selected using b3-01. If b3-01 is set to 0 the search method is speed calcula- tion. It has to be activated by a multi-function input (H1- set to 61 or 62). If b3-01 is set to 1, the search method is speed calculation too, but speed search is performed at every RUN command and has not to be activated by a multifunction input.
  • Page 180
    Speed Search after Short Baseblock (during Power Loss Recovery, etc.) Loss Time shorter than the Minimum Baseblock Time (L2-03) • AC power supply Set frequency Start using reference speed detected Output frequency Output current 10 ms *1. After AC power supply recovery, motor waits for the minimum Speed Search Wait Time (b3-05).
  • Page 181
    Speed Search after Short Baseblock (during Power Loss Recovery, etc.) Loss time shorter than minimum baseblock time • AC power supply Output frequency before power loss Set frequency Deceleration time reference set in b3-03 Output frequency b3-02 speed search operating current Output current *1 Baseblock time may be reduced by the output frequency immediately before baseblock.
  • Page 182: Continuing Operation At Constant Speed When Frequency Reference Is Lost

    Continuing Operation at Constant Speed When Frequency Reference Is Lost The frequency reference loss detection function can be used to continue operation at reduced speed using the set value in parameter L4-06 as frequency reference value. When using an analog input as frequency reference source, a frequency reference loss is detected, when the reference value drops over 90 % in 400 ms or less.

  • Page 183: Restarting Operation After Transient Error (Auto Restart Function)

    Restarting Operation After Transient Error (Auto Restart Function) If an Inverter error occurs during operation, the Inverter will perform self-diagnosis. If no error is detected, the Inverter will automatically restart. This is called the auto restart function. The auto restart function can be applied to the following errors. •…

  • Page 184
    Auto Restart External Outputs To output auto restart signals externally, set H2-01 or H2-02 (multi-function contact output terminals M1-M2 or M3-M4 function selection) to 1E (auto restart). Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…
  • Page 185: Inverter Protection

    Inverter Protection Inverter Overheat Protection The Inverter is protected against overheating using a thermistor that detects the heatsink temperature. When the overheat temperature level is reached the inverter output is switched off. To prevent a suddenly and unexpected stop of the inverter due to an overtemperature, an overheating pre- alarm can be output.

  • Page 186: Ground Fault Protection

    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Allowed DC bus ripple before input phase loss is detected in percent of the OV trip level. Input Phase Loss Detection 0.0 to L8-06 5.0 % Level…

  • Page 187: Setting The Ambient Temperature

    Setting the Ambient Temperature The overload capability of the inverter depends on the ambient temperature. At ambient temperatures higher than 45°C (40°C for IP20/NEMA1 types) the output current capacity is reduced, i.e. the OL2 alarm level will be lowered. Related Parameters Parame- Change Setting…

  • Page 188: Soft Cla Selection

    Soft CLA Selection Soft CLA is a current detection level for the output IGBT protection. Using parameter L8-18 Soft CLA can be enabled or disabled. Related Parameters Parame- Change Setting Factory Access ter Num- Name Description during Range Setting Level Operation 0: Disable L8-18…

  • Page 189: Input Terminal Functions

    Input Terminal Functions Temporarily Switching Operation between Digital Operator and Control Circuit Terminals You can switch the Inverter run command inputs and frequency reference inputs between local (i.e., Digital Operator) and remote (input method set in b1-01 and b1-02). If any input from H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) has been set to 1 (local/remote selection), this input can be used to switch over between local and remote.

  • Page 190: Blocking The Inverter Output (Baseblock Command)

    Blocking the Inverter Output (Baseblock Command) Set 8 or 9 (Baseblock command NO/NC) in one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) to perform baseblock commands using the terminal’s ON/OFF operation, and thereby to block the inverter output. Clear the baseblock command to restart the operation using the speed search method set in b3-01 (speed search selection).

  • Page 191: Drive Enable/Disable

    Drive Enable/Disable If a digital input is programmed for this function (H1- = 6A) the drive can be enabled or disabled by switching the digital input ON/OFF (ON – Drive enabled). If the input is switched OFF while a RUN command is active the inverter will stop using the stopping method set in b1-03.

  • Page 192: Raising And Lowering Frequency References Using Contact Signals (Up/Down)

    Multi-function Digital Inputs (H1-01 to H1-05) Set Value Function Accel./Decel. Ramp Hold Time Chart The time chart when using Acceleration/Deceleration Ramp Hold commands is given below. Power supply Forward/Stop Acceleration/Deceleration Ramp Hold Frequency reference Output frequency Hold Hold Fig 6.37 Acceleration/Deceleration Ramp Hold Raising and Lowering Frequency References Using Contact Signals (UP/ DOWN) The UP and DOWN commands raise and lower Inverter frequency references by turning ON and OFF a multi-…

  • Page 193
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the frequency reference upper limit as a per- Frequency reference upper 0.0 to d2-01 cent, taking the maximum output frequency to be 100.0% limit 110.0…
  • Page 194
    Connection Example and Time Chart The time chart and settings example when the UP command is allocated to the multi-function Digital Input terminal S3, and the DOWN command is allocated to terminal S4, are shown below. Parameter Name Set Value H1-01 Multi-function input (terminal S3) H1-02…
  • Page 195: Trim Control Function (+/- Speed)

    Trim Control Function (+/– Speed) The +/– speed function increments or decrements the frequency reference from analog input by the value set in parameter d4-02 (+/– Speed Limit) using two digital inputs. To use this function, set two of the parameters H1-01 to H1-05 (multi-function contact terminal inputs S3 to S7 function selection) to 1C (Trim Control Increase command) and 1D (Trim Control Decrease command).

  • Page 196: Hold Analog Frequency Using User-Set Timing

    Hold Analog Frequency Using User-set Timing When one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) is set to 1E (sample/hold analog frequency command), the analog frequency reference will be held from 100 ms after the terminal is turned ON, and operation will continue at this frequency.

  • Page 197: Switching Operation Source To Communication Option Card

    Switching Operation Source to Communication Option Card The source of frequency reference and RUN command can be switched between a Communication option card and the sources selected in b1-01 and b1-02. Set one of the parameters H1-01 to H1-05 (multi-function digital inputdigital inputs S3 to S7 function selection) to 2 or 36 to enable operation source switchover.

  • Page 198: Auto/Hand Mode Switching By Digital Input

    AUTO/HAND Mode Switching by Digital Input The settings 6D and 6E for H1-01 to H1-05 allow to switch between HAND and AUTO mode by digital input. Both signals cannot both be programmed simultaneously. If the Auto Mode Selection is programmed into a digital input, the Auto mode will be selected whenever that input is closed.

  • Page 199: Stopping The Inverter On External Device Errors (External Error Function)

    Stopping the Inverter on External Device Errors (External Error Function) The external error function activates the error contact output and stops the Inverter operation. Using this func- tion the inverter operation can be stopped on peripheral devices break down or other errors. The digital opera- tor will display EFx (External error [input terminal Sx]).

  • Page 200: Output Terminal Functions

    Output Terminal Functions The digital multifunction outputs can be set for several functions using the H2-01 and H2-02 parameters (ter- minal M1 to M4 function selection). These functions are described in the following section. Related Parameters Parame- Change Setting Factory Access ter Num- Name…

  • Page 201
    Zero Speed (Setting: 1) The output frequency is higher than the zero speed level (b2-01). The output frequency is lower than the zero speed level (b2-01). Output frequency Zero speed level (b2-01) Zero-speed output Fig 6.42 Timing Chart for Zero-speed Inverter Operation Ready (Setting: 6) If a multifunction output is programmed for this function the output will be switched ON when the initialisa- tion of the inverter at startup has finished without any faults.
  • Page 202
    Fault Reset Command Active (Setting: 11) If a multifunction output is set for this function the output is switched ON as long as a fault reset command is input at one of the digital inputs. Reverse Direction (Setting: 1A) If a multifunction output is programmed for this function the output is switched ON whenever the drive is turning the motor in the direction that corresponds to reverse direction.
  • Page 203: Monitor Parameters

    Monitor Parameters This section explains the analog monitor and pulse monitor parameters. Using the Analog Monitor Parameters Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Monitor selection (terminal Sets the number of the monitor item to be output H4-01 1 to 38 (U1-…

  • Page 204
    Adjusting the Meter The influence of the settings of gain and bias on the analog output channel is shown on three examples in 6.50. Output voltage Gain: 170% Bias: Gain: 100% Bias: Gain: Bias: 100% Monitor item (e.g. Output Frequency) 100% Fig 6.43 Monitor Output Adjustment…
  • Page 205: Individual Functions

    Individual Functions Using MEMOBUS Communications You can perform serial communications with Programmable Logic Controls (PLCs) or similar devices using the MEMOBUS protocol. MEMOBUS Communications Configuration MEMOBUS communications are configured using 1 master (PLC) and a maximum of 31 slaves. Serial com- munications between master and slave are normally started by the master and the slaves respond.

  • Page 206
    Communications Connection Terminal The MEMOBUS communications use the following terminals: S+, S-, R+, and R-. Enable the terminating resistance by turning ON pin 1 of switch S1 for the last Inverter (seen from the PLC) only. Terminating re- RS-422A or sistance RS-485 Terminating resistance (1/2W, 110 Ohms)
  • Page 207
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the frequency reference input source 0: Digital Operator b1-01 Reference source selection 1: Control circuit terminal (analog input) 0 to 3 2: MEMOBUS communications 3: Option Card Sets the run command input source 0: Digital Operator…
  • Page 208
    Message Format In MEMOBUS communications, the master sends commands to the slave, and the slave responds. The mes- sage format is configured for both sending and receiving as shown below, and the length of data packets depends on the command (function) content. Slave address Function code Data…
  • Page 209
    Error Check Errors during communications are detected using CRC-16 (cyclic redundancy check, checksum method). The result of the checksum calculation is stored in a data-word (16 bit), which starting value is FFFH. The value of this word is manipulated using Exclusive OR- and SHIFT operations together with the data package that should be sent (slave address, function code, data) and the fixed value A001H.
  • Page 210
    The following example clarifies the calculation method. It shows the calculation of a CRC-16 code with the slave address 02H (0000 0010) and the function code 03H (0000 0011). The resulting CRC-16 code is D1H for the lower and 40H for the higher byte. The example calculation in this example is not done completely (normally data would follow the function code).
  • Page 211
    MEMOBUS Message Example An example of MEMOBUS command/response messages is given below. Reading Inverter Memory Register Contents The content of maximum 16 inverter memory registers can be readout at a time. Among other things the command message must contain the start address of the first register that is to be read out and the quantity of registers that should be read out.
  • Page 212
    Loopback Test The loopback test returns command messages directly as response messages without changing the contents to check the communications between the master and slave. You can set user-defined test code and data values. The following table shows a message example when performing a loopback test with the slave no. 1. Response Message Response Message Command Message…
  • Page 213
    Data Tables The data tables are shown below. The types of data are as follows: Reference data, monitor data, and broadcast data. Reference Data The reference data table is shown below. These data can be read and written. They cannot be used for monitor- ing functions.
  • Page 214
    Monitor Data The following table shows the monitor data. Monitor data can only be read. Register No. Contents Inverter status signal Bit 0 During run Bit 1 Zero speed Bit 2 During reverse operation Bit 3 Reset signal active 0010H Bit 4 During speed agree Bit 5…
  • Page 215
    Register No. Contents Fault Content 2 Bit 0 EF3, External fault set on terminal S3 Bit 1 EF4, External fault set on terminal S4 Bit 2 EF5, External fault set on terminal S5 Bit 3 EF6, External fault set on terminal S6 Bit 4 EF7, External fault set on terminal S7 Bit 5…
  • Page 216
    Register No. Contents Alarm Content 1 Bit 0 UV, DC bus undervoltage Bit 1 OV, DC bus overvoltage Bit 2 OH, Inverter heatsink overheat pre-alarm Bit 3 OH2, Inverter overheat alarm input by a digital input Bit 4 OL3, Overtorque detection 1 Bit 5 Not used Bit 6…
  • Page 217
    Register No. Contents Error details Bit 0 Overcurrent (OC), Ground fault (GF) Bit 1 Main circuit overvoltage (OV) Bit 2 Inverter overload (OL2) Bit 3 Inverter overheat (OH1, OH2) Bit 4 Not used Bit 5 Fuse blown (PUF) Bit 6 PI feedback lost (FbL) Bit 7 External error (EF, EFO)
  • Page 218
    Register No. Contents Inverter status Bit 0 Operation 1: Operating Bit 1 Zero speed 1: Zero speed Bit 2 Frequency agree 1: Agreement Bit 3 User-defined speed agree 1: Agreement 1: Output frequency ≤ L4-01 Bit 4 Frequency detection 1 1: Output frequency ≥…
  • Page 219
    Broadcast Data Using broadcast data a command can be given to all slaves at the same time. The slave address in the com- mand message must be set to 00H. All slaves will receive the message. They will not respond. The following table shows the broadcast data.
  • Page 220
    ENTER Command When writing parameters to the Inverter from the PLC using MEMOBUS communications, the parameters are temporarily stored in the parameter data area in the Inverter. To enable these parameters the ENTER command must be used. There are two types of ENTER commands: ENTER commands that enable parameter data in RAM, and ENTER commands that write data to EEPROM (non-volatile memory) in the Inverter at the same time as enabling the data in RAM.
  • Page 221
    Slave Not Responding In the following cases, the slave will ignore the write function. When a communications error (overrun, framing, parity, or CRC-16) is detected in the command message. • When the slave address in the command message and the slave address in the Inverter do not agree. •…
  • Page 222: Using The Timer Function

    Using the Timer Function The multi-function digital input terminals S3 to S7 can be used as timer function input terminals, and multi- function output terminals M1-M2 and M3-M4 can be used as timer function output terminals. By setting the delay time, you can prevent chattering of the sensors and switches. Set one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7) to 18 (timer •…

  • Page 223: Using Pi Control

    Using PI Control PI control is a method of making the feedback value (detection value) match the set target value. By combin- ing proportional control (P) and integral control (I), you can even control system with load fluctuation. The characteristics of the PI control operations are given below. The output of a P-element is proportional to the input (deviation).

  • Page 224
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion 0: Disabled b5-01 PI control mode selection 1: Enabled 0, 1, 3 3: PI control enabled (frequency reference + PI output) 0.00 Sets P-control proportional gain. b5-02 Proportional gain (P) 1.00…
  • Page 225
    Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the unit for b5-19, U1-38 and U1-24 0: 0.01 Hz 1: 0.01% (the maximum output frequency E1-04 is taken as 100%. 2 – 39: rpm, set value is equal to motor poles 40 –…
  • Page 226
    Multi-Function Digital Inputs (H1-01 to H1-05) Set Value Function PI control disable (ON: PI control disabled) PI control integral reset (reset when reset command is input or when stopped during PI control) PI control integral hold (ON: Integral hold) PI soft starter PI input characteristics switch Multi-Function Analog Input (H3-09) Set Value…
  • Page 227
    PI Feedback Input Methods Select one of the following PI control feedback input methods Input Method Setting Conditions Analog input A2 Set H3-09 (Multi-function Analog Input Terminal A2 Selection) to B (PI feedback). Analog input A1 (Differential Set H3-09 to 16. Analog input A1 becomes the feedback 1 input and the analog input A2 Mode) becomes the feedback 2 input.
  • Page 228
    Suppressing Long-cycle Vibration If vibration occurs with a longer cycle than the integral time (I) set value, lengthen the integral time (I) to sup- press the vibration. Response Before adjustment After adjustment Time Suppressing Short Cycle Vibration If short cycle vibration occurs reduce the proportional gain (P), or increase the PI primary delay time constant. Response Before adjustment After adjustment…
  • Page 229
    PI Control Block The following diagram shows the PI control block in the Inverter. Fig 6.50 PI Control Block Diagram…
  • Page 230
    PI Feedback Loss Detection When performing PI control, be sure to use the PI feedback loss detection function. Otherwise if the PI feed- back gets lost, the Inverter output frequency may accelerate to the maximum output frequency. When b5-12 is set to 1 and the PI feedback value falls below the PI feedback loss detection level (b5-13) for a time longer than the PI feedback loss detection time (b5-14), a Fbl alarm (Feedback loss) will be displayed at the operator and inverter operation is continued.
  • Page 231
    PI Snooze Function By setting b5-21 to 2 the PI snooze function can be enabled. This software observes the output frequency (Softstarter output) and the PI feedback value to turn the inverter ON and OFF automatically as the system requires. Snooze Activation •…
  • Page 232
    Square Root Feedback Operation If parameter b5-28 is set to 1 the feedback value is converted into a value that equals the square root of the actual feedback. This can be used to control the flow rate when a pressure sensor is used to generate a feed- back value.
  • Page 233: Energy-Saving

    Energy-saving To perform energy saving, set b8-01 (Energy Saving Mode Selection) to 1. Related Parameters Chang Param- e Dur- Setting Factory Access eter Name Details Range Setting Level Number Opera- tion Select whether to enable or disable energy-saving control. b8-01 Energy-saving mode selection 0 or 1 0: Disable…

  • Page 234: Setting Motor Parameters

    Setting Motor Parameters Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the motor rated current. 0.32 to This set value will become the reference value for 1.90 A E2-01 Motor rated current 6.40 motor protection and torque limits.

  • Page 235: Setting The V/F Pattern

    Setting the V/f Pattern Using the E1- parameters the Inverter input voltage and the V/f pattern can be set as needed. It is not rec- ommended to change the settings when the motor is used in open loop vector control mode. Related Parameters Change Param-…

  • Page 236
    Characteristic Application Specifications Value 0 (F) 50 Hz specifications These patterns are used in general applications 60 Hz specifications Constant Torque where the load torque is fixed, regardless of rota- Characteristic 60 Hz specifications, voltage saturation at 50 Hz tion speed, e.g. for linear transport systems. 72 Hz specifications, voltage saturation at 60 Hz 50 Hz specifications, cubical torque characteris- 50 Hz specifications, quadratic torque character-…
  • Page 237
    0.4 to 1.5 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 238
    2.2 to 45 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 239
    55 to 300 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 240
    When E1-03 is set to F (User-defined V/f pattern), you can set the parameters E1-04 to E1-10. If E1-03 is set to anything other than F, you can only read parameters E1-04 to E1-10. If the V/f characteristics INFO are linear, set E1-07 and E1-09 to the same value. In this case, E1-08 will be ignored. Output voltage (V) Frequency (Hz) Fig 6.54 User-Set V/f Pattern…
  • Page 241: High Slip Braking

    High Slip Braking If the load inertia is large the high slip braking function can be used to shorten the deceleration time compared to the normal deceleration time without using a braking option, e.g. for emergency stops. The function must be activated by a multifunction input. Note the following: The HSB function is not comparable with the normal deceleration function.

  • Page 242: Digital Operator Functions

    Digital Operator Functions Setting Digital Operator Functions Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Set the number of the 3rd. monitor item to be dis- played in the Drive Mode. (U1- o1-01 Monitor selection 4 to 33…

  • Page 243
    Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the operation when the Digital Operator is dis- connected. 0: Disabled (Operation continues even if the Dig- Operation selection when dig- ital Operator is disconnected.) o2-06 0 or 1 ital operator is disconnected…
  • Page 244
    Disabling the LOCAL/REMOTE Key (o2-01) Set o2-01 to 0 to disable the LOCAL/REMOTE Key on the Digital Operator. If the key is disabled, it cannot be used anymore to switch over the frequency reference source or the RUN command source between LOCAL and REMOTE. Disabling the STOP Key (o2-02) This parameter is used to set whether the STOP key on the operator is active during remote control (b1-02 ≠…
  • Page 245: Copying Parameters

    Energy Monitor Initialize (o2-14) This function can be used to initialize the energy monitor by setting parameter o2-14 to 1. HAND Key Funktion Selection (o2-15) With this parameter the HAND key can be enabled by setting parameter o2-15 to 1. The factory setting is 0, HAND key disabled.

  • Page 246
    Storing Inverter set values in the Digital Operator (READ) To store Inverter set values in the Digital Operator use the following method. Step Digital Operator Display Explanation Press the MENU key, and select advanced program- ming mode. Press the DATA/ENTER key to enter programming mode.
  • Page 247
    Writing Parameter Set Values Stored in the Digital Operator to the Inverter (COPY) To write parameter set values stored in the Digital Operator to the Inverter, use the following method. Step Digital Operator Display Explanation Press the MENU key, and select advanced program- ming mode.
  • Page 248
    Comparing Inverter Parameters and Digital Operator Parameter Set Values (VERIFY) To compare Inverter parameters and Digital Operator parameter set values, use the following method. Step Digital Operator Display Explanation Press the MENU key. and select advanced program- ming mode. Press the DATA/ENTER key to enter the parameters monitor display.
  • Page 249: Prohibiting Writing Parameters From The Digital Operator

    Prohibiting Writing Parameters from the Digital Operator If you set A1-01 to 0, all parameters except A1-01 and A1-04 are write protected, U1- , U2- , and U3- will be displayed. If A1-01 is set to 1, only the parameters A1-01, A1-04 and A2- can be read or written, U1- , U2-…

  • Page 250: Displaying User-Set Parameters Only

    Displaying User-set Parameters Only The A2 parameters (user-set parameters) and A1-01 (parameter access level) can be used to establish a param- eter set that contains only the most important parameters. Set the number of the parameter to which you want to refer in A2-01 to A2-32, and then set A1-01 to 1. Using the advanced programming mode you can read and modify A1-01 to A1-03 and the parameters set in A2-01 to A2-32 only.

  • Page 252: Troubleshooting

    Troubleshooting This chapter describes the fault displays and countermeasure for Inverter and motor problems. Protective and Diagnostic Functions……..7-2 Troubleshooting …………..7-12…

  • Page 253: Protective And Diagnostic Functions

    Protective and Diagnostic Functions This section describes the alarm functions of the Inverter. The alarm functions include fault detection, alarm detection, operation error detection, and autotuning error detection. Fault Detection When the Inverter detects a fault, the fault contact output operates, and the Inverter output is switched OFF causing the motor to coast to stop.

  • Page 254
    Display Meaning Probable Causes Corrective Actions Main Circuit Undervoltage The main circuit DC voltage is below the Undervoltage Detection • An open-phase error occurred at the Level (L2-05). input power supply. 200 V class: Approx. 190 V • A momentary power loss occurred. 400 V class: Approx.
  • Page 255
    Display Meaning Probable Causes Corrective Actions The load is too heavy. The accelera- Check the size of the load and the tion time, deceleration time, and cycle length of the acceleration, deceler- Motor Overload time are too short. ation, and cycle times. The motor overload protection The V/f characteristics voltage is too function has operated based on the…
  • Page 256
    Display Meaning Probable Causes Corrective Actions MEMOBUS Communications Check the communications Error devices and communications sig- A normal receive was not possible – nals. for 2 s or longer after control data were received once. Option Communications Error A communications error was Check the communications detected during a run command or devices and communications sig-…
  • Page 257
    Display Meaning Probable Causes Corrective Actions The Option Card is not connected Turn off the power and insert the properly. Card again. Communications Option Card A/D converter error The Option Card’s A/D converter is Replace the Communications faulty. Option Card. Communications Option Card self diagnostic error Communications Option Card…
  • Page 258: Alarm Detection

    (blink- Replace the cooling fan. (Contact cooling fin exceeded the setting in ing) The Inverter cooling fan has stopped. your Omron Yaskawa Motion Con- L8-02. trol representative.) Check the size of the load and the length of the acceleration, decelera- Motor overheating tion, and cycle times.

  • Page 259
    Display Meaning Probable causes Corrective Actions External fault (Input terminal S3) (blink- ing) External fault (Input terminal S4) (blink- ing) An external fault was input from a Remove the cause of the external External fault (Input terminal S5) multi-function input terminal (S3 to (blink- fault.
  • Page 260: Operation Errors

    Operation Errors An operation error will occur if there is an invalid setting or a contradiction between two parameter settings. It won’t be possible to start the Inverter until the parameters have been set correctly. (The alarm output and fault contact outputs will not operate.) When an operation error has occurred, refer to the following table to identify and correct the cause of the errors.

  • Page 261: Errors During Autotuning

    Errors During Autotuning The errors that can occur during autotuning are given in the following table. If an error is detected, the motor will coast to a stop and an error code will be displayed on the Digital Operator. The error contact output and alarm output will not function.

  • Page 262
    Func- Display Meaning Probable causes Corrective Actions tion Use the copy function for the same The Inverter product code or soft- ID does not match product code and software number ware number is different. only. The capacity of the Inverter being Inverter capacity Use the copy function for the same copied and the capacity stored in the…
  • Page 263: Troubleshooting

    Troubleshooting Due to parameter setting errors, faulty wiring, and so on, the Inverter and motor may not operate as expected when the system is started up. If that occurs, use this section as a reference and perform the appropriate counter measures. If the contents of the fault are displayed, refer to Protective and Diagnostic Functions.

  • Page 264: If The Motor Does Not Operate

    If the Motor Does Not Operate The motor does not operate when the RUN key on the Digital Operator is pressed. The following causes are possible. The operation method setting is wrong. If parameter b1-02 (Operation Method Selection) is set to 1 (control circuit terminal), the motor will not oper- ate when the RUN key is pressed.

  • Page 265: If The Direction Of The Motor Rotation Is Reversed

    The frequency reference is too low. If the frequency reference is set below the frequency set in E1-09 (Minimum Output Frequency), the Inverter will not operate. Raise the frequency reference to at least the minimum output frequency. The motor stops during acceleration or when a load is connected. The load may be too heavy.

  • Page 266: If Motor Deceleration Is Slow

    A signal is being input to the multifunction analog input terminal A2. When “0” (frequency bias) is set for parameter H3-09 (Multi-function Analog Input Terminal A2 Function Selection), a frequency corresponding to the terminal A2 input voltage (current) is added to the frequency ref- erence.

  • Page 267: If Peripheral Devices Like Plc’s Or Other Are Influenced By The Starting Or Running Inverter

    If peripheral devices like PLC’s or other are influenced by the starting or running inverter If electrical noise is generated by Inverter perform the following countermeasures: Change the Inverter’s Carrier Frequency Selection (C6-02) to lower the carrier frequency. • Install an Input Noise Filter at the Inverter’s power supply input. •…

  • Page 268: If The Motor Rotates Even When Inverter Output Is Stopped

    If the Motor Rotates Even When Inverter Output is Stopped If the motor coasts at low speed after a deceleration to stop has been executed, it means that the DC injection braking is not decelerating enough. Adjust the DC injection braking as follows: Increase the parameter b2-02 (DC Injection Braking Current) setting.

  • Page 270: Maintenance And Inspection

    Maintenance and Inspection This chapter describes basic maintenance and inspection for the Inverter. Maintenance and Inspection ……….8-2…

  • Page 271: Maintenance And Inspection

    Maintenance and Inspection Outline of Maintenance The maintenance period of the Inverter is as follows: Maintenance Period: Within 18 months from shipping from the factory or within 12 months from being deliv- ered to the final user, whichever comes first. Daily Inspection Check the following items with the system in operation.

  • Page 272: Periodic Maintenance Of Parts

    Periodic Maintenance of Parts The Inverter consists of many parts, and these parts must be operating properly in order to ensure full func- tioning of the Inverter. Among the electronic components, there are some that require maintenance depending on their usage condi- tions.

  • Page 273: Cooling Fan Replacement Outline

    Cooling Fan Replacement Outline 200 V and 400 V Class Inverters of 18.5 kW or Less A cooling fan is attached to the bottom of the Inverter. If the Inverter is installed using the mounting holes on the back of the Inverter, the cooling fan can be replaced without removing the Inverter from the installation panel.

  • Page 274
    200 V and 400 V Class Inverters of 22 kW or More A cooling fan is attached to the top panel inside the Inverter. The cooling fan can be replaced without removing the Inverter from the installation panel. Removing the Cooling Fan 1.
  • Page 275: Removing And Mounting The Control Circuit Terminal Card

    Removing and Mounting the Control Circuit Terminal Card Removing the Control Circuit Terminal Card 1. Remove the Digital Operator and front cover. 2. Remove the connecting line connectors connected to FE and NC on the control circuit terminal card. 3. Loosen the mounting screws (1) on the left and right sides of the control terminals until they are free. (It is not necessary to remove these screws completely.

  • Page 276: Specifications

    Specifications This chapter describes the basic specifications of the Inverter and specifications for options and peripheral devices. Standard Inverter Specifications ……….9-2…

  • Page 277: Standard Inverter Specifications

    Standard Inverter Specifications The standard Inverter specifications are listed by capacity in the following tables. Specifications by Model Specifications are given by model in the following tables. 200V Class Model Number 20P4 20P7 21P5 22P2 23P7 25P5 27P5 2011 2015 2018 2022 2030…

  • Page 278
    400 V Class Model Number 40P4 40P7 41P5 42P2 43P7 44P0 45P5 47P5 4011 4015 4018 CIMR-E7Z Max. applicable motor output 0.55 0.75 18.5 (kW) Rated output capacity (kVA) Rated output current (A) 12.5 Max. output voltage (V) 3-phase; 380, 400, 415, 440, 460, or 480 VAC (Proportional to input voltage.) Max.
  • Page 279: Common Specifications

    Common Specifications The following specifications apply to both 200 V and 400 V Class Inverters. Model Number Specification CIMR-E7Z Sine wave PWM Control method V/f control Speed control range 1:40 Speed control accuracy ±3 (25°C ± 10°C) Frequency control range 0.0to 200.0 Hz Digital references: ±…

  • Page 280: Appendix

    Appendix This chapter provides precautions for the Inverter, motor, and peripheral devices and also provides lists of parameters. Inverter Application Precautions ……….10-2 Motor Application Precautions ……….10-5 User Parameters…………..10-7…

  • Page 281: Inverter Application Precautions

    If a large initial torque is required, select an Inverter with a somewhat larger capacity or increase the capacity of both, the motor and the inverter. Options Terminals 3 are for connecting only the options specifically provided by Omron Yaskawa Motion Control. Never connect any other devices to these terminals.

  • Page 282: Installation

    Installation Observe the following precautions when installing an Inverter. Installation in Enclosures Either install the Inverter in a clean location where it is not subjected to oil mist, dust, and other contaminants, or install the Inverter in a completely enclosed panel. Provide cooling measures and sufficient panel space so that the temperature surrounding the Inverter does not go beyond the allowable temperature.

  • Page 283: Handling

    Handling Observe the following precautions when wiring or performing maintenance for an Inverter. Wiring Check The Inverter will be internally damaged if the power supply voltage is applied to output terminal U, V, or W. Check wiring for any mistakes before supplying power. Check all wiring and control sequences carefully. Magnetic Contactor Installation Do not start and stop operation frequently with a magnetic contactor installed on the power supply line.

  • Page 284: Motor Application Precautions

    Installation Withstand Voltage If the input voltage is high (480 V or higher) or the wiring distance is long, the motor insulation voltage must be considered. Contact your Omron Yaskawa Motion Control representative for details. Acoustic Noise Noise varies with the carrier frequency. At high carrier frequencies, the noise is almost the same when the motor is operated with a commercial power supply.

  • Page 285: Power Transmission Mechanism (Speed Reducers, Belts And Chains)

    Power Transmission Mechanism (Speed Reducers, Belts and Chains) If an oil-lubricated gearbox or speed reducer is used in the power transmission mechanism, oil lubrication will be affected when the motor operates only in the low speed range. The power transmission mechanism will make noise and experience problems with service life and durability if the motor is operated at low speeds continuously.

  • Page 286: User Parameters

    User Parameters Factory settings are given in the following table. These are factory settings for a 200 V Class Inverter with 0.4 kW (open loop vector control). Factory Name Setting Setting A1-00 Language selection for digital operator display (JVOP-160-OY) A1-01 Parameter access level A1-03 Initialize…

  • Page 287
    Factory Name Setting Setting b5-17 Acceleration/deceleration time for PI reference 0.0 s b5-18 PI Setpoint Selection b5-19 PI Setpoint 0.0% b5-20 PI Setpoint Scaling b5-21 PI Sleep Function Selection b5-22 Snooze Level b5-23 Snooze Delay Time b5-24 Wake Up-level b5-25 Setpoint Boost b5-26 Maximum Boost Time…
  • Page 288
    Factory Name Setting Setting d4-01 Frequency reference hold function selection d4-02 + — Speed limits E1-01 Input voltage setting 200 V E1-03 V/f pattern selection E1-04 Max. output frequency 50.0 Hz E1-05 Max. voltage 200.0 V E1-06 Base frequency 50.0 Hz E1-07 Mid.
  • Page 289
    Factory Name Setting Setting H4-07 Analog output 1 signal level selection H4-08 Analog output 2 signal level selection H5-01 Station address H5-02 Communications speed selection H5-03 Communications parity selection H5-04 Stopping method after communications error H5-05 Communications error detection selection H5-06 Send wait time 5 ms…
  • Page 290
    Factory Name Setting Setting L8-18 Soft CLA selection L8-19 Frequency reference during OH pre-alarm 20.0% N1-01 Hunting-prevention function selection N1-02 Hunting-prevention gain 1.00 N3-01 High-slip braking deceleration frequency width N3-02 High-slip braking current limit 150% N3-03 High-slip braking stop dwell time 1.0 s N3-04 High-slip braking OL time…

Omron VARISPEED E7 User Manual

  • Contents

  • Table of Contents

  • Troubleshooting

  • Bookmarks

Quick Links

Manual No.

YEG-TOE-S616-56.1-OY

VARISPEED E7

Variable Torque Frequency Inverter

USER’S MANUAL

loading

Related Manuals for Omron VARISPEED E7

Summary of Contents for Omron VARISPEED E7

  • Page 1
    Manual No. YEG-TOE-S616-56.1-OY VARISPEED E7 Variable Torque Frequency Inverter USER’S MANUAL…
  • Page 2: Table Of Contents

    Safety Precautions and Instructions for Use ……….VIII EMC Compatibility ………………X Line Filters ………………..XII Registered Trademarks …………….XV Handling Inverters …………..1-1 Varispeed E7 Introduction …………….1-2 Varispeed E7 Applications………………..1-2 Varispeed E7 Models…………………. 1-2 Confirmations upon Delivery ……………1-4 Checks……………………..1-4 Nameplate Information ………………..

  • Page 3
    Checks ……………………. 2-26 Installing and Wiring Option Cards …………2-27 Option Card Models ………………… 2-27 Installation ……………………2-27 Digital Operator and Modes…………3-1 Digital Operator ………………. 3-2 Digital Operator Display ………………..3-2 Digital Operator Keys ………………… 3-2 Modes ………………….3-4 Inverter Modes ………………….. 3-4 Switching Modes ………………….
  • Page 4
    Protection Function Parameters: L …………….5-32 N: Special Adjustments………………..5-38 Digital Operator Parameters: o ………………5-39 T: Motor Autotuning ………………… 5-42 U: Monitor Parameters ………………..5-43 Setting Values that Change with the V/f Pattern Selection (E1-03) ……5-48 Factory Settings that Change with the Inverter Capacity (o2-04) …….. 5-49 Parameter Settings by Function……….
  • Page 5
    Restarting Operation After Transient Error (Auto Restart Function) ……6-44 Inverter Protection ………………6-46 Inverter Overheat Protection ………………6-46 Input Phase Loss Detection Level…………….6-46 Ground Fault Protection ………………..6-47 Cooling Fan Control ………………… 6-47 Setting the Ambient Temperature …………….6-48 OL2 Characteristics at Low Speed …………….
  • Page 6
    Troubleshooting ………………7-12 If Parameters Cannot Be Set………………7-12 If the Motor Does Not Operate ………………7-13 If the Direction of the Motor Rotation is Reversed …………7-14 If the Motor Does Not Put Out Torque or If Acceleration is Slow……..7-14 If the Motor Operates at Higher Speed than the Frequency Reference …….
  • Page 8: Warnings

    Warnings CAUTION Cables must not be connected or disconnected, nor signal tests carried out, while the power is switched on. The Varispeed DC bus capacitor remains charged even after the power has been switched off. To avoid an electric shock hazard, disconnect the frequency inverter from the mains before carrying out maintenance.

  • Page 9: Safety Precautions And Instructions For Use

    Safety Precautions and Instructions for Use General Please read these safety precautions and instructions for use thoroughly before installing and operating this inverter. Also read all of the warning signs on the inverter and ensure they are never damaged or removed. Live and hot inverter components may be accessible during operation.

  • Page 10
    This also applies to equipment with the CE mark. It is the responsibility of the manufacturer of the system or machine to ensure conformity with EMC limits. Your supplier or Omron Yaskawa Motion Control representative must be contacted when using leakage cur- rent circuit breaker in conjunction with frequency inverters.
  • Page 11: Emc Compatibility

    EMC Compatibility Introduction This manual was compiled to help system manufacturers using OMRON YASKAWA Motion Control (OYMC) frequency inverters design and install electrical switchgear. It also describes the measures necessary to comply with the EMC Directive. The manual’s installation and wiring instructions must therefore be fol- lowed.

  • Page 12
    The grounding surfaces must be highly conductive bare metal. Remove any coats of varnish and paint. –Ground the cable shields at both ends. –Ground the motor of the machine. You can find further informations in the document EZZ006543 which can be ordered at Omron Yaskawa Motion Control.
  • Page 13: Line Filters

    Line Filters Recommended Line Filters for Varispeed E7 Inverter Model Line Filter Current Weight Dimensions Varispeed E7 Model 55011 (kg) W x D x H Class* CIMR-E7Z40P4 B, 25 m* CIMR-E7Z40P7 B, 25 m* 3G3RV-PFI3010-SE 141 x 46 x 330…

  • Page 14
    Inverter Model Line Filters Current Weight Dimensions Varispeed E7 Type 55011 (kg) W x D x H Class CIMR-E7Z20P4 B, 25 m* CIMR-E7Z20P7 3G3RV-PFI3010-SE B, 25 m* 141 x 45 x 330 B, 25 m* CIMR-E7Z21P5 CIMR-E7Z22P2 3G3RV-PFI3018-SE B, 25 m*…
  • Page 15
    Installation inverters and EMC filters L1 L3 Ground Bonds ( remove any paint ) Line Inverter Filter Load Cable Length as short as possible Metal Plate Motor cable screened Ground Bonds ( remove any paint )
  • Page 16: Registered Trademarks

    Registered Trademarks The following registered trademarks are used in this manual. DeviceNet is a registered trademark of the ODVA (Open DeviceNet Vendors Association, Inc.). • InterBus is a registered trademark of Phoenix Contact Co. • ControlNet is a registered trademark of ControlNet International, Ltd. •…

  • Page 18: Handling Inverters

    Handling Inverters This chapter describes the checks required upon receiving or installing an Inverter. Varispeed E7 Introduction…………1-2 Confirmations upon Delivery……….1-4 Exterior and Mounting Dimensions ……..1-8 Checking and Controlling the Installation Site …..1-11 Installation Orientation and Space ……..1-12 Removing and Attaching the Terminal Cover ……1-13…

  • Page 19: Varispeed E7 Introduction

    4-1, Trial Operation. Varispeed E7 Models es: 200 V and 400 V. The maximum motor capacities The Varispeed E7 Series includes Inverters in two voltage class vary from 0.55 to 300 kW (42 models). Models Table 1.1 Varispeed E7 Models Specifications Varispeed E7 (Always specify through the protective structure when ordering.)

  • Page 20
    Table 1.1 Varispeed E7 Models Specifications Varispeed E7 (Always specify through the protective structure when ordering.) Maximum Voltage Motor Output Open Chassis Enclosed Wall-mounted Class Capacity kW Capacity Basic Model Number (IEC IP00) (IEC IP20, NEMA 1) CIMR-E7Z CIMR-E7Z 0.55…
  • Page 21: Confirmations Upon Delivery

    Use a screwdriver or other tools to check for tightness. If you find any irregularities in the above items, contact the agency from which you purchased the Inverter or your Omron Yaskawa Motion Control representative immediately. Nameplate Information There is a nameplate attached to the side of each Inverter. The nameplate shows the model number, specifica- tions, lot number, serial number, and other information on the Inverter.

  • Page 22
    The model number of the Inverter on the nameplate indicates the specification, voltage class, and maximum motor capacity of the Inverter in alphanumeric codes. CIMR – E7 Z 2 0 P4 Inverter Varispeed E7 Specification Max. Motor Capacity European Standard 0.55 kW…
  • Page 23: Component Names

    Component Names Inverters of 18.5 kW or Less The external appearance and component names of the Inverter are shown in 1.4. The Inverter with the ter- minal cover removed is shown in Fig 1.5 Top protective cover (Part of Enclosed Wall- mounted Type (IEC IP20, NEMA Type 1) Mounting hole Front cover…

  • Page 24
    Inverters of 22 kW or More The external appearance and component names of the Inverter are shown in Fig 1.6 The Inverter with the ter- minal cover removed is shown in Fig 1.7 Mounting holes Inverter cover Cooling fan Front cover Digital Operator Nameplate Terminal cover…
  • Page 25: Exterior And Mounting Dimensions

    Exterior and Mounting Dimensions Open Chassis Inverters (IP00) Exterior diagrams of the Open Chassis Inverters are shown below. 200 V Class Inverters of 22 or 110 kW 200 V/400 V Class Inverters of 0.55 to 18.5 kW 400 V Class Inverters of 22 to 160 kW 400 V Class Inverters of 185 to 300 kW Fig 1.8 Exterior Diagrams of Open Chassis Inverters…

  • Page 26: Enclosed Wall-Mounted Inverters (Nema1)

    Enclosed Wall-mounted Inverters (NEMA1) Exterior diagrams of the Enclosed Wall-mounted Inverters (NEMA1) are shown below. Grommet 200 V/400 V Class Inverters of 0.55 to 18.5 kW 200 V Class Inverters of 22 or 75 kW 400 V Class Inverters of 22 to 160 kW Fig 1.9 Exterior Diagrams of Enclosed Wall-mounted Inverters…

  • Page 27
    Table 1.3 Inverter Dimensions (mm) and Masses (kg) of E7 inverters from 0.4 to 160kW Caloric Value Dimensions (mm) Max. Appli- Open Chassis (IP00) Enclosed Wall-mounted (NEMA1) Cool- Total Voltage cable Heat Appr Appr Class Motor Metho Exter Inter- nting Gen- Output Hole…
  • Page 28: Checking And Controlling The Installation Site

    Checking and Controlling the Installation Site Install the Inverter in the installation site described below and maintain optimum conditions. Installation Site Install the Inverter under the following conditions in a pollution degree 2 environment. Type Ambient Operating Temperature Humidity -10 to + 40 °C Enclosed wall-mounted 95% RH or less (no condensation) -10 to + 45 °C…

  • Page 29: Installation Orientation And Space

    Installation Orientation and Space Install the Inverter vertically so as not to reduce the cooling effect. When installing the Inverter, always pro- vide the following installation space to allow normal heat dissipation. 30 mm min. 120 mm min. 30 mm min. 50 mm min.

  • Page 30: Removing And Attaching The Terminal Cover

    Removing and Attaching the Terminal Cover Remove the terminal cover to wire cables to the control circuit and main circuit terminals. Removing the Terminal Cover Inverters of 18.5 kW or Less Loosen the screw at the bottom of the terminal cover, press in on the sides of the terminal cover in the direc- tions of arrows 1, and then lift up on the terminal in the direction of arrow 2.

  • Page 31: Removing/Attaching The Digital Operator And

    Removing/Attaching the Digital Operator and Front Cover Inverters of 18.5 kW or Less To attach optional cards or change the terminal card connector, remove the Digital Operator and front cover in addition to the terminal cover. Always remove the Digital Operator from the front cover before removing the front cover.

  • Page 32
    Removing the Front Cover Press the left and right sides of the front cover in the directions of arrows 1 and lift the bottom of the cover in the direction of arrow 2 to remove the front cover as shown in the following illustration. Fig 1.14 Removing the Front Cover (Model CIMR-E7Z45P5 Shown Above) Mounting the Front Cover After wiring the terminals, mount the front cover to the Inverter by performing the steps to remove the front…
  • Page 33
    1. Do not remove or attach the Digital Operator or mount or remove the front cover using methods other than those described above, otherwise the Inverter may break or malfunction due to imperfect contact. 2. Never attach the front cover to the Inverter with the Digital Operator attached to the front cover. Imperfect contact can result.
  • Page 34: Inverters Of 22 Kw Or More

    Inverters of 22 kW or More For inverters with an output of 22 kW or more, remove the terminal cover and then use the following proce- dures to remove the Digital Operator and front cover. Removing the Digital Operator Use the same procedure as for Inverters with an output of 18.5 kW or less. Removing the Front Cover Lift up at the location label 1 at the top of the control circuit terminal card in the direction of arrow 2.

  • Page 36: Wiring

    Wiring This chapter describes wiring terminals, main circuit terminal connections, main circuit terminal wiring specifications, control circuit terminals, and control circuit wiring specifications. Connections to Peripheral Devices……..2-2 Connection Diagram …………..2-3 Terminal Block Configuration……….2-5 Wiring Main Circuit Terminals ……….2-6 Wiring Control Circuit Terminals ……….2-19 Wiring Check…………….2-26 Installing and Wiring Option Cards ……..2-27…

  • Page 37: Connections To Peripheral Devices

    Connections to Peripheral Devices Examples of connections between the Inverter and typical peripheral devices are shown in 2.1. Power supply Molded-case circuit breaker Magnetic con- tactor (MC) AC reactor for power factor improvement Input noise filter DC reactor for power factor improvement Inverter Ground…

  • Page 38: Connection Diagram

    The connection diagram of the Inverter is shown in 2.2. When using the Digital Operator, the motor can be operated by wiring only the main circuits. DC reactor to improve input power factor (optional) Short-circuit bar Main contactor Varispeed E7 Fuse Motor 3-phase power R/L1 U/T1 supply CIMR-…

  • Page 39: Circuit Descriptions

    Circuit Descriptions Refer to the numbers indicated in 2.2. These circuits are hazardous and are separated from accessible surfaces by protective separation. These circuits are separated from all other circuits by protective separation consisting of double and reinforced insulation. These circuits may be interconnected with SELV (or equivalent) or non- SELV circuits, but not both.

  • Page 40: Terminal Block Configuration

    Terminal Block Configuration The terminal arrangements are shown in Fig 2.3 2.4. Control circuit terminals Main circuit terminals Charge indicator Ground terminal Fig 2.3 Terminal Arrangement (200 V/400 V Class Inverter of 0.4 kW) Control Control circuit circuit terminals terminals Charge indicator Main circuit…

  • Page 41: Wiring Main Circuit Terminals

    Wiring Main Circuit Terminals Applicable Wire Sizes and Closed-loop Connectors Select the appropriate wires and crimp terminals from Table 2.1 Table 2.2. Refer to instruction manual TOE-C726-2 for wire sizes for Braking Units and Braking Resistor Units. Table 2.1 200 V Class Wire Sizes Recom- Possible Inverter…

  • Page 42
    Table 2.1 200 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 70 to 95 R/L1, S/L2, T/L3, 1 U/T1, 17.6 to 22.5 (2/0 to 4/0) (2/0) V/T2, W/T3, R1/L11, S1/L21, T1/L31…
  • Page 43
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) R/L1, S/L2, T/L3, 2, B1, B2, 1.5 to 4 U/T1, V/T2, W/T3 E7Z40P4 1.2 to 1.5 (14 to 10)
  • Page 44
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 35 to 50 R/L1, S/L2, T/L3, 1, U/T1, V/T2, W/ 9.0 to 10.0 (2 to 1/0) T3, R1/L11, S1/L21, T1/L31 10 to 16…
  • Page 45
    Table 2.2 400 V Class Wire Sizes Recom- Possible Inverter Termi- Tightening mended Wire Wire Sizes Model Terminal Symbol Torque Wire Type Size mm CIMR- Screws (N•m) (AWG) (AWG) 150 × 2P R/L1, S/L2, T/L3 (300 × 2P) 120 × 2P U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L33 (250 ×…
  • Page 46: Main Circuit Terminal Functions

    Main Circuit Terminal Functions Main circuit terminal functions are summarized according to terminal symbols in Table 2.3. Wire the termi- nals correctly for the desired purposes. Table 2.3 Main Circuit Terminal Functions (200 V Class and 400 V Class) Model: CIMR-E7Z Purpose Terminal Symbol 200 V Class…

  • Page 47: Main Circuit Configurations

    CIMR-E7Z4022 to 4055 CIMR-E7Z2022, 2030 Power Control Power Control supply circuits supply circuits CIMR-E7Z4075 to 4300 CIMR-E7Z2037 to 2110 Power Control Power Control supply circuits supply circuits Note:Consult your Omron Yaskawa Motion Control representative before using 12-phase rectification.

  • Page 48: Standard Connection Diagrams

    Standard Connection Diagrams Standard Inverter connection diagrams are shown in 2.5. These are the same for both 200 V Class and 400 V Class Inverters. The connections depend on the Inverter capacity. CIMR-E7Z20P4 to 2018 and 40P4 to 4018 CIMR-E7Z2022, 2030, and 4022 to 4055 Braking Resistor Braking Resistor Unit (optional)

  • Page 49: Wiring The Main Circuits

    Wiring the Main Circuits This section describes wiring connections for the main circuit inputs and outputs. Wiring Main Circuit Inputs Observe the following precautions for the main circuit power supply input. Installing Fuses To protect the inverter, it is recommended to use semiconductor fuses like they are shown in the table below. Table 2.5 Input Fuses FUSE Inverter Type…

  • Page 50
    Installing a Moulded-case Circuit Breaker When connecting the power input terminals (R/L2, S/L2, and T/L3) to the power supply using a moulded-case circuit breaker (MCCB) observe that the circuit breaker is suitable for the Inverter. Choose an MCCB with a capacity of 1.5 to 2 times of the inverter’s rated current. •…
  • Page 51
    Wiring the Output Side of Main Circuit Observe the following precautions when wiring the main output circuits. Connecting the Inverter and Motor Connect output terminals U/T1, V/T2, and W/T3 respective to the motor lead wires U, V, and W. Check that the motor rotates forward with the forward run command. Switch over any two of the output termi- nals to each other and reconnect if the motor rotates in reverse with the forward run command.
  • Page 52
    Installing a Thermal Overload Relay Contact for Motor Protection This Inverter has an electronic thermal protection function to protect the motor from overheating. If, however, more than one motor is operated with one Inverter or a multi-polar motor is used, always install a thermal relay (THR) between the Inverter and the motor and set L1-01 to 0 (no motor protection).
  • Page 53
    200 V and 400 V Class Inverters with 0.4 to 18.5 kW Output Capacity LKEB Braking CDBR Braking Resistor Unit Unit Thermal protector Inverter trip contact Thermal overload relay trip contact 200 V and 400 V Class Inverters with 22 kW or higher Output LKEB Braking CDBR Braking…
  • Page 54: Wiring Control Circuit Terminals

    Wiring Control Circuit Terminals Wire Sizes For remote operation using analog signals, keep the control line length between the Analog Operator or oper- ation signals and the Inverter to 50 m or less, and separate the lines from main power lines or other control cir- cuits to reduce induction from peripheral devices.

  • Page 55
    Straight Solderless Terminals for Signal Lines Models and sizes of straight solderless terminal are shown in the following table. Table 2.8 Straight Solderless Terminal Sizes Model Manufacturer Wire Size mm (AWG) 0.25 (24) AI 0.25 — 8YE 12.5 0.5 (20) AI 0.5 — 8WH 0.75 (18) AI 0.75 — 8GY…
  • Page 56: Control Circuit Terminal Functions

    Control Circuit Terminal Functions The functions of the control circuit terminals are shown in Table 2.9. Use the appropriate terminals for the cor- rect purposes. Table 2.9 Control Circuit Terminals with default settings Signal Name Function Signal Level Type Forward run/stop command Forward run when ON;…

  • Page 57
    Fig 2.11 * 3. When driving a reactive load, such as a relay coil with DC power supply, always insert a flywheel diode as shown in Flywheel diode The rating of the flywheel diode Coil must be at least as high as the cir- External power: 1 A max.
  • Page 58
    The settings of switch S1 and jumper CN15 are described in the following table. Name Function Setting RS-485 and RS-422 terminating resis- OFF: No terminating resistance S1-1 ON: Terminating resistance of 110 Ω tance V: 0 to 10 V (internal resistance: 20 kΩ) S1-2 Input method for analog input A2 I: 4 to 20 mA (internal resistance: 250 Ω)
  • Page 59: Control Circuit Terminal Connections

    Control Circuit Terminal Connections Connections to Inverter control circuit terminals are shown in 2.14. Varispeed E7 CIMR-E7Z47P5 ≈ ≈ Forward Run/Stop Fault contact output 250 VAC, 1 A max. Reverse Run/Stop 30 VDC, 1 A max. External fault Fault reset…

  • Page 60: Control Circuit Wiring Precautions

    Control Circuit Wiring Precautions Observe the following precautions when wiring control circuits. Separate control circuit wiring from main circuit wiring (terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, • 2, and 3) and other high-power lines. Separate wiring for control circuit terminals MA, MB, MC, M1, M2, M3, and M4 (contact outputs) from •…

  • Page 61: Wiring Check

    Wiring Check Checks Check all wiring after wiring has been completed. Do not perform continuity check on control circuits. Per- form the following checks on the wiring. Is all wiring correct? • Have no wire clippings, screws, or other foreign material been left? •…

  • Page 62: Installing And Wiring Option Cards

    Installing and Wiring Option Cards Option Card Models Option cards for field bus communications can be mounted in the Inverter like shown in 2.15. Table 2.11 lists the type of Option Cards and their specifications. Table 2.11 Option Cards Card Model SI-N1/ DeviceNet communications card…

  • Page 64: Digital Operator And Modes

    Digital Operator and Modes This chapter describes Digital Operator displays and functions, and pro- vides an overview of operating modes and switching between modes. Digital Operator…………..3-2 Modes ………………3-4…

  • Page 65: Digital Operator

    Digital Operator This section describes the displays and functions of the Digital Operator. Digital Operator Display The key names and functions of the Digital Operator are described below. Drive Mode Indicators FWD: Lights up when a forward run command is input.

  • Page 66
    Table 3.1 Key Functions Name Function Selects the rotation direction of the motor when the Inverter is being FWD/REV Key operated from the Digital Operator. Sets the active digit when programming user parameters. Shift/RESET Key Also acts as the Reset key when a fault has occurred. Selects menu items, sets user parameter numbers, and increments set Increment Key values.
  • Page 67: Modes

    Modes This section describes the Inverter’s modes and switching between modes. Inverter Modes The Inverter’s user parameters and monitoring functions are organized in groups called modes that make it easier to read and set user parameters.The Inverter is equipped with 5 modes. The 5 modes and their primary functions are shown in the Table 3.17.

  • Page 68: Switching Modes

    Switching Modes The mode selection display will appear when the MENU key is pressed from a monitor or setting display. Press the MENU key from the mode selection display to switch between the modes. Press the DATA/ENTER key from the mode selection display to monitor data and from a monitor display to access the setting display.

  • Page 69: Drive Mode

    Drive Mode The Drive mode is the mode in which the Inverter can be operated. The following monitor displays are possi- ble in drive mode: The frequency reference, output frequency, output current, and output voltage, as well as fault information and the fault history. When b1-01 (Reference selection) is set to 0, the frequency can be changed from the frequency setting display using the Increment, Decrement, and Shift/ keys.

  • Page 70: Quick Programming Mode

    Quick Programming Mode In quick programming mode, the parameters required for Inverter trial operation can be monitored and set. Parameters can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET keys to change the frequency. The user parameter will be written and the monitor display will be returned to when the DATA/ENTER key is pressed after changing the setting.

  • Page 71: Advanced Programming Mode

    Advanced Programming Mode In advanced programming mode all Inverter parameters can be monitored and set. Parameters can be changed from the setting displays. Use the Increment, Decrement, and Shift/RESET keys to change the parameter. The user parameter will be written and the display will return to monitor display when the DATA/ENTER key is pressed after changing the setting.

  • Page 72
    Setting User Parameters Below the procedure to change C1-01 (Acceleration Time 1) from 10 s to 20 s is shown. Table 3.3 Setting User Parameters in Advanced Programming Mode Step Digital Operator Display Description Power supply turned ON. MENU Key pressed to enter drive mode. MENU Key pressed to enter quick program- ming mode.
  • Page 73: Verify Mode

    Verify Mode Verify mode is used to display any parameters that have been changed from their default settings in a pro- gramming mode or by autotuning. “None” will be displayed if no settings have been changed. Even in verify mode, the same procedures can be used to change settings as they are used in the programming modes.

  • Page 74: Autotuning Mode

    Autotuning Mode Autotuning automatically measures and sets the motor line-to-line resistance of the motor and motor cable to compensate the voltage drop and thereby to achieve the best performance. Example of Operation Set the motor rated output power (in kW) and the motor rated current, specified on the motor nameplate and then press the RUN key.

  • Page 76: Trial Operation

    Trial Operation This chapter describes the procedures for trial operation of the Inverter and provides an example of trial operation. Trial Operation Procedure…………4-2 Trial Operation ……………4-3 Adjustment Suggestions …………4-11…

  • Page 77: Trial Operation Procedure

    Trial Operation Procedure Perform trial operation according to the following flowchart. START Installation Wiring Set power supply voltage. Turn ON power Confirm status Select operating Basic settings method. (Quick programming mode) Set E1-03. V/f default: 200V/50Hz (400V/50Hz) Motor cable over 50 m or heavy load possibly causing motor to stall or overload?

  • Page 78: Trial Operation

    Trial Operation The procedure for the trial operation is described in order in this section. Application Confirmation First, confirm the application before using the Inverter. It is designed for: Fan, blower, pump • Setting the Power Supply Voltage Jumper (400 V Class Inverters of 75 kW or Higher) The power supply voltage jumper must be set for 400 V Class Inverters of 75 kW or higher.

  • Page 79: Power On

    Power ON Confirm all of the following items and then turn ON the power supply. Check that the power supply is of the correct voltage. • 200 V class: 3-phase 200 to 240 VDC, 50/60 Hz • 400 V class: 3-phase 380 to 480 VDC, 50/60 Hz •…

  • Page 80: Checking The Display Status

    Checking the Display Status After normal power up without any faults the operator display will show the following: The frequency reference monitor is dis- Display for normal operation played in the data display section. When a fault has occurred, the details of the fault will be displayed instead of the above display. In that case, refer to Chapter 7, Troubleshooting.

  • Page 81
    Table 4.1 Basic Parameter Settings : Must be set. : Set as required. Setting Factory Parameter Class Name Description Page Number Range Setting Sets the carrier frequency. The factory Depends Carrier frequency 5-20 C6-02 setting and setting range depends on the 0 to F on setting selection…
  • Page 82: Selecting The V/F Pattern

    Selecting the V/f pattern Set either one of the fixed patterns (0 to D) in E1-03 (V/f Pattern Selection) or set F in E1-03 to specify a • user-set pattern as required for the motor and load characteristics in E1-04 to E1-13 in advanced program- ming mode.

  • Page 83: Application Settings

    Digital Operator Displays during Autotuning The following displays will appear on the Digital Operator during autotuning. Digital Operator Display Description Motor rated power and current: T1-02 and T1-04 The autotuning start display will appear when all set- tings through T1-04 have been completed. The A.TUNE and DRIVE indicators will be lit.

  • Page 84: No-Load Operation

    No-load Operation This section describes trial operation in which the motor is in no-load state, that means the machine is not con- nected to the motor. To avoid failures caused due to the wiring of the control circuit it’s recommended to use the LOCAL mode.

  • Page 85: Check And Recording User Parameters

    Check and Recording User Parameters Use verify mode (i.e., when the VERIFY indicator on the Digital Operator lights up) to check user parameters that have been changed for trial operation and record them in a user parameter table. Any user parameters that have been changed by autotuning will also be displayed in verify mode. If required, the copy function (parameters o3-01 and o3-02 displayed in advanced programming mode) can be used to copy the changed settings from the inverter to a recording area in the Digital Operator.

  • Page 86: Adjustment Suggestions

    Adjustment Suggestions If hunting, vibration, or other problems originated by the control system occur during trial operation, adjust the parameters listed in the following table according to the control method. This table lists the most com- monly used user parameters only. Name (Parameter Factory Set- Recommended…

  • Page 88: User Parameters

    User Parameters This chapter describes all user parameters that can be set in the Inverter. User Parameter Descriptions……….5-2 Digital Operation Display Functions and Levels ….5-3 User Parameter Tables…………5-10…

  • Page 89: User Parameter Descriptions

    User Parameter Descriptions This section describes the contents of the user parameter tables. Description of User Parameter Tables User parameter tables are structured as shown below. Here b1-01 (Frequency Reference Selection) is used as an example. Change Param- MEMO- Setting Factory during Access…

  • Page 90: Digital Operation Display Functions And Levels

    Digital Operation Display Functions and Levels The following figure shows the Digital Operator display hierarchy for the Inverter. Function Page MENU Drive Mode Status Monitor Parameters 5-43 Fault Trace 5-46 Inverter can be operated and its Fault History 5-47 status can be displayed. Initialize Mode 5-10 User-specified Setting Mode…

  • Page 91: User Parameters Available In Quick Programming Mode

    User Parameters Available in Quick Programming Mode The minimum user parameters required for Inverter operation can be monitored and set in quick programming mode. The user parameters displayed in quick programming mode are listed in the following table. These, and all other user parameters, are also displayed in advanced programming mode.

  • Page 92
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets P-control proportional gain. 0.00 Proportional b5-02 P-control is not performed when the set- 1.00 1A6H gain (P) ting is 0.00. 25.00 Sets I-control integral time. 0.0 to b5-03 Integral (I) time…
  • Page 93
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the unit for b5-19, U1-38 and U1-24 0: 0.01 Hz 1: 0.01% (the maximum output fre- quency E1-04 is taken as 100%. 2 –…
  • Page 94
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the acceleration time to accelerate Acceleration C1-01 from 0 Hz to the maximum output fre- 200H time 1 quency. 0.0 to 10.0 s 6000.0 Sets the deceleration time to decelerate Deceleration…
  • Page 95
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion 0: Stop (Operation follows the frequency reference.) Operation when 1: Operation continues at the frequency, L4-05 frequency refer- set in parameter L4-06. 0 or 1 49DH ence is missing Frequency reference loss means that the…
  • Page 96
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Range Setting Opera- Level Register tion Sets the brightness on the optional LCD operator (JVOP-160-OY). 0: light o1-05 LCD-Focus 0 to 5 509H 3: normal 5: dark Selects the monitor that is displayed and 2nd Monitor o1-07 locked in the second line of the operator…
  • Page 97: User Parameter Tables

    User Parameter Tables A: Setup Settings Initialize Mode: A1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Used to select the language dis- played on the Digital Operator JVOP-160-OY only. 0: English 1: Japanese Language selec-…

  • Page 98
    User-set Parameters: A2 The parameters set by the user are listed in the following table. Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Used to select the function for each of the user specified parameters.
  • Page 99: Application Parameters: B

    Application Parameters: b Operation Mode Selections: b1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the frequency reference input method. 0: Digital Operator Reference source b1-01 1: Control circuit terminal (ana- 0 to 3 180H selection…

  • Page 100
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the source of frequency refer- ence for HAND operation. HAND Fref b1-12 0: Digital Operator 0 or 1 01E0 – Source* 1: Control Circuit Terminal (ana- log input) * This parameter is effective only, if the HOA operator JVOP-162 is used.
  • Page 101
    Speed Search: b3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Enables/disables the speed search function for the RUN command and sets the speed search method. 0:Disabled, speed calculation 1: Enabled, speed calculation 2: Disabled, current detection 3: Enabled, current detection Speed Calculation:…
  • Page 102
    Timer Function: b4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the timer function output ON- delay time (dead time) for the timer Timer function 0.0 to b4-01 function input, in 1-second units. 0.0 s 1A3H 6-83…
  • Page 103
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: No detection of PI feedback loss. 1: Detection of PI feedback loss. Operation continues during Selection of PI detection, the fault contact is b5-12 feedback signal 0 to 2…
  • Page 104
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the feedback level at which 0 to b5-24 Wake-Up Level the inverter wakes up from snooze 1E6H 6-84 operation. Sets the PI setpoint boost when the snooze mode is activated.
  • Page 105: Tuning Parameters: C

    Tuning Parameters: C Acceleration/Deceleration: C1 Change Param- MEMO- Setting Factory during Access eter Name Description BUS Reg- Page Range Setting Opera- Level Number ister tion Sets the acceleration time to accel- Acceleration 4-11 C1-01 erate from 0 Hz to the 200H time 1 6-15…

  • Page 106
    S-Curve Acceleration/Deceleration: C2 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion When the S-curve characteristic time is set, the accel time will increase by only half of the S-curve characteristic times S-curve charac- at start and end.
  • Page 107
    Carrier Frequency: C6 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion Selects the carrier frequency. Carrier fre- 4-11 C6-02 Select F to enable detailed settings 0 to F 224H quency selection using parameters C6-03 to C6-05.
  • Page 108: Reference Parameters: D

    Reference Parameters: d Preset Reference: d1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Frequency 0.00 d1-01 Sets the frequency reference. 280H reference 1 Sets the frequency reference when Frequency 0.00 d1-02 multi-step speed command 1 is ON…

  • Page 109
    Jump Frequencies: d3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the center values of the jump frequencies in Hz. d3-01 Jump frequency 1 0.0 Hz 294H 6-23 This function is disabled when the jump frequency is set to 0 Hz.
  • Page 110: Motor Parameters: E

    Motor Parameters: E V/f Pattern: E1 Param- Change MEMO- eter Setting Factory during Access Name Description Page Num- Range Setting Opera- Level Register tion Sets the Inverter input voltage. 155 to Input voltage set- 200 V E1-01 This setting is used as a reference value 300H 6-96 ting…

  • Page 111
    Motor Setup: E2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the motor rated current. This set value will become the ref- 0.32 to Motor rated cur- erence value for motor protection 1.90 A 6-32 E2-01…
  • Page 112: Option Parameters: F

    Option Parameters: F Communications Option Cards: F6 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the stopping method for com- munications errors. 0: Deceleration to stop using the Operation selec- deceleration time in C1-02 F6-01 tion after commu-…

  • Page 113: Terminal Function Parameters: H

    Terminal Function Parameters: H Multi-function Digital Inputs: H1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Terminal S3 H1-01 Multi-function digital input 1 0 to 6F 400H – function selection Terminal S4 H1-02 Multi-function digital input 2…

  • Page 114
    Setting Function Page Value Analog frequency reference sample/hold 6-57 External fault 20 to 2F 6-60 Input mode: NO contact/NC contact, Detection mode: Normal/during operation PI control integral reset (reset when reset command is input or when stopped during PI control) 6-84 PI control integral hold (ON: Hold) 6-84…
  • Page 115
    Setting Function Page Value Inverter operation ready 6-62 READY: After initialization or no faults During DC bus undervoltage (UV) detection 6-62 During baseblock (NO contact, ON: during baseblock) 6-62 Frequency reference source selection (ON: Frequency reference from Operator) 6-62 Run command source selection status (ON: Run command from Operator) 6-62 Overtorque/undertorque detection 1 NO (NO contact, ON: Overtorque/undertorque detection) 6-30…
  • Page 116
    Change Parame- MEMO- Setting Factory during Access ter Num- Name Description Page Range Setting Opera- Level Register tion Sets the input level when terminal -100.0 Bias (terminal A2 is 0 V (4 mA/0 mA) accord- H3-11 0.0% 41AH 6-21 ing to the 100% value of the func- +100.0 tion set in parameter H3-09.
  • Page 117
    Multi-function Analog Outputs: H4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Monitor selec- Sets the number of the monitor H4-01 tion (terminal item to be output (U1- ) at ter- 1 to 53 41DH 6-64…
  • Page 118
    MEMOBUS Communications: H5 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0 to 20 H5-01 Station address Sets the Inverter’s node address. 425H 6-66 Sets the baud rate for MEMOBUS communications.
  • Page 119: Protection Function Parameters: L

    Protection Function Parameters: L Motor Overload: L1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets whether the motor overload function is enabled or disabled at electric thermal overload relay. 0: Disabled Motor protection 1: General-purpose motor protec-…

  • Page 120
    Power Loss Ride Through: L2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Disabled (DC bus undervoltage (UV1) detection) 1: Enabled (Restarted when the power returns within the time set in L2-02.
  • Page 121
    Stall Prevention: L3 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Disabled (Acceleration as set. With a heavy load, the motor may stall.) 1: Enabled (Acceleration stopped when L3-02 level is exceeded. Stall prevention Acceleration starts again when L3-01…
  • Page 122
    Reference Detection: L4 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Effective when «f agree 1», Speed agreement 0.0 to «Frequency detection 1» or «Fre- L4-01 0.0 Hz 499H 6-25 detection level 200.0 quency detection 2″…
  • Page 123
    Torque Detection: L6 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Overtorque/undertorque detec- tion disabled. 1: Overtorque detection only with speed agreement; operation continues (warning is output). 2: Overtorque detected continu- ously during operation;…
  • Page 124
    Hardware Protection: L8 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the detection temperature for the Inverter overheat detection pre- alarm in °C. Overheat pre- 50 to 95 °C* L8-02 4AEH 6-46…
  • Page 125: N: Special Adjustments

    N: Special Adjustments Hunting Prevention Function: N1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0: Hunting-prevention function Hunting-preven- disabled N1-01 tion function 0 or 1 580H 6-28 1: Hunting-prevention function selection enabled Hunting-preven-…

  • Page 126: Digital Operator Parameters: O

    Digital Operator Parameters: o Monitor Select: o1 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Set the number of the 3rd. monitor item to be displayed in the Drive o1-01 Monitor selection 6 to 53 500H 6-104…

  • Page 127
    Multi-function Selections: o2 Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion Sets the Digital Operator Local/ Remote key LOCAL/ 0: Disabled o2-01 REMOTE key 0 or 1 505H 6-105 1: Enabled (Switches between the enable/disable Digital Operator and the param- eter settings b1-01, b1-02.)
  • Page 128
    Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 1: American Spec. 2: Europe Spec. o2-09 Initialize Mode 1 or 5 50DH 4: PV-A Spec. 5: PV-E Spec. Set the initial value of the fan oper- Fan operation ation time.
  • Page 129: T: Motor Autotuning

    T: Motor Autotuning Change Param- MEMO- Setting Factory during Access eter Name Description Page Range Setting Opera- Level Number Register tion 0.40 Motor output Sets the output power of the motor 0.00 to T1-02 702H power in kilowatts. 650.00 0.32 to Motor rated cur- Sets the rated current of the motor 1.90 A…

  • Page 130: U: Monitor Parameters

    U: Monitor Parameters Status Monitor Parameters: U1 Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register Frequency refer- Monitors/sets the frequency ref- 10 V: Max. frequency 0.01 U1-01 ence erence value.* (0 to + 10 V possible) 10 V: Max.

  • Page 131
    Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register Inverter operating status. 1: Zero speed 1: Reverse 1: Reset signal input U1-12 Operation status (Cannot be output.) – 1: Speed agree 1: Inverter ready 1: Minor fault 1: Major fault Monitors the total operating time…
  • Page 132
    Param- MEMO- Output Signal Level During Multi- Min. eter Name Description Function Analog Output Unit Number Register 0.01 U1-38 PI setpoint PI setpoint 10 V: 100% PI setpoint Shows MEMOBUS errors. 1: CRC error 1: Data length error Not used (always 0) 1: Parity error MEMOBUS…
  • Page 133
    Fault Trace: U2 Param- Output Signal Level During MEMO- Min. eter Name Description Multi-Function Analog Out- Unit Number Register U2-01 Current fault The content of the current fault. – U2-02 Last fault The error content of the last fault. – Reference frequency at The reference frequency when the 0.01…
  • Page 134
    Fault History: U3 Param- MEMO- Output Signal Level During Min. eter Name Description Multi-Function Analog Output Unit Number Register U3-01 Last fault The error content of 1st last fault. – The error content of 2nd last U3-02 Second last fault –…
  • Page 135: Setting Values That Change With The V/F Pattern Selection (E1-03)

    Setting Values that Change with the V/f Pattern Selection (E1-03) 200 V and 400 V Class Inverters of 0.4 to 1.5 kW Parameter Number Unit Factory Setting E1-03 E1-04 50.0 60.0 60.0 72.0 50.0 50.0 60.0 60.0 50.0 50.0 60.0 60.0 90.0 120.0…

  • Page 136: Factory Settings That Change With The Inverter Capacity (O2-04)

    Factory Settings that Change with the Inverter Capacity (o2-04) 200 V Class Inverters Parame- ter Num- Name Unit Factory Setting – Inverter Capacity 0.75 o2-04 kVA selection – Energy-saving coeffi- b8-04 – 288.20 223.70 169.40 156.80 122.90 94.75 72.69 70.44 63.13 cient Carrier frequency selec-…

  • Page 137
    400 V Class Inverters Parame- ter Num- Name Unit Factory Setting – Inverter Capacity 0.75 o2-04 kVA selection – Energy-saving coeffi- b8-04 – 576.40 447.40 338.80 313.60 245.80 236.44 189.50 145.38 140.88 126.26 cient Carrier frequency selec- C6-02 – tion E2-01 Motor rated current 1.00…
  • Page 138
    Parame- ter Num- Name Unit Factory Setting – Inverter Capacity o2-04 kVA selection – Energy-saving coeffi- b8-04 – 30.13 30.57 27.13 21.76 cient Carrier frequency selec- C6-02 – tion E2-01 Motor rated current 270.0 310.0 370.0 500.0 E2-03 Motor no-load current 70.0 81.0 96.0…
  • Page 140: Parameter Settings By Function

    Parameter Settings by Function Carrier Frequency Selection ……….6-2 Frequency Reference …………6-4 Run Command……………6-8 Stopping Methods …………..6-10 Acceleration and Deceleration Characteristics ….6-15 Adjusting Frequency References………6-21 Speed Limit (Frequency Reference Limit Function)…..6-24 Frequency Detection…………6-25 Improved Operating Efficiency ……….6-27 Machine Protection …………..6-29 Automatic Restart …………..6-37 Inverter Protection…………..6-46 Input Terminal Functions…………6-50 Output Terminal Functions ………..6-61…

  • Page 141: Carrier Frequency Selection

    Carrier Frequency Selection Setting the Carrier Frequency Using the following parameters the carrier frequency setting can be fitted to the applications requirements. Related Parameters Changes Setting Factory During Access Param- Name Details Range Setting Opera- Level eter No. tion? Selects the carrier frequency. Carrier frequency selec- C6-02 0 to F…

  • Page 142
    Carrier Frequency C6-03 Output frequency x C6-05 x K* C6-04 Output frequency E1-04 Max. Output Frequency * K is the coefficient determined by the set value in C6-03. C6-03 ≥ 10.0 kHz: K=3 10.0 kHz > C6-03 ≥ 5.0 kHz: K=2 5.0 kHz >…
  • Page 143: Frequency Reference

    Frequency Reference This section explains how to input the frequency reference. Selecting the Frequency Reference Source Set parameter b1-01 to select the frequency reference source. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Set the frequency reference source…

  • Page 144
    2-Step Switching: Master/Auxiliary If 2-step switching between master and auxiliary speed frequencies is performed, input the master speed fre- quency reference to control circuit terminal A1, and input the auxiliary speed frequency reference to A2. When terminal S3 (multi-step speed command 1) is OFF, terminal A1 input (master speed frequency refer- ence) will be the Inverter frequency reference, and when terminal S3 is ON, terminal A2 input (auxiliary speed frequency reference) will be the Inverter frequency reference.
  • Page 145: Using Multi-Step Speed Operation

    Using Multi-Step Speed Operation With Varispeed-E7 series Inverters, you can change the speed to a maximum of 5 steps, using 4 multi-step fre- quency references, and one jog frequency reference. The following example of a multi-function input terminal function shows a 5-step operation using multi-step references 1 and 2 and jog frequency selection functions.

  • Page 146
    Connection Example and Time Chart The following diagram shows a time chart and control circuit terminal connection example during a 9-step operation. Inverter Forward/stop Reverse/stop Error reset Multi-step command 1 Multi-step command 2 Jog frequency External fault Digital input neutral Fig 6.7 Control Circuit Terminal During 5-step Operation Frequency reference 4…
  • Page 147: Run Command

    Run Command This section explains input methods for the run command. Selecting the Run Command Source Set parameter b1-02 to select the source for the run command. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…

  • Page 148
    Performing Operations Using 3-Wire Control When any parameter from H1-01 to H1-05 (multi-function digital input terminals S3 to S7) is set to 0, termi- nals S1 and S2 are used for a 3-wire control, and the multi-function input terminal that has been set to 0 works as a forward/reverse selection command terminal.
  • Page 149: Stopping Methods

    Stopping Methods This section explains methods of stopping the Inverter. Selecting the Stopping Method when a Stop Command is Input There are four methods of stopping the Inverter when a stop command is input: Deceleration to stop • Coast to stop •…

  • Page 150
    Deceleration to Stop If the stop command is input (the run command is turned OFF) when b1-03 is set to 0, the motor decelerates to stop according to the deceleration time that has been set. (Factory setting: C1-02 (Deceleration Time 1)). If the output frequency when decelerating to stop falls below b2-01, the DC injection brake will be applied using the DC current set in b2-02 for the time set in b2-04.
  • Page 151: Using The Dc Injection Brake

    Coast to Stop with Timer If the stop command is input (i.e., the run command is turned OFF) when b1-03 is set to 3, the Inverter output is switched off so that the motor coasts to stop. After the stop command is input, run commands are ignored until the time T has elapsed.

  • Page 152: Motor Pre-Heat Function

    Motor Pre-heat Function The motor pre-heat function can be used to prevent e.g. moisture inside the motor due to condensation. The pre-heat current can be set in b2-09. Using a digital input which is set for motor pre-heat (H1- =60) the function can be enabled or disabled.

  • Page 153: Using An Emergency Stop

    Using an Emergency Stop Set a multi-function input terminal (H1- ) to 15 or 17 (emergency stop) to decelerate to stop using the deceleration time set in C1-09. If inputting the emergency stop with an NO contact, set the multi-function input terminal (H1- ) to 15, and if inputting the emergency stop with an NC contact, set the multi-function input terminal (H1-…

  • Page 154: Acceleration And Deceleration Characteristics

    Acceleration and Deceleration Characteristics This section explains the acceleration and deceleration characteristics of the Inverter. Setting Acceleration and Deceleration Times Acceleration time indicates the time to increase the output frequency from 0% to 100% of the maximum out- put frequency (E1-04). Deceleration time indicates the time to decrease the output frequency from 100% to 0% of (E1-04).

  • Page 155
    Switching Acceleration and Deceleration Time Automatically Use this setting when you want to switch acceleration/deceleration time automatically using the output fre- quency. When the output frequency reaches the set value in C1-11, the Inverter switches the acceleration/deceleration time automatically as shown in the following diagram. Set C1-11 to a value other than 0.0 Hz.
  • Page 156: Preventing The Motor From Stalling During Acceleration (Stall Prevention During Acceleration Function)

    Setting Example The S-curve characteristic when switching operation (forward/reverse) is shown in the following diagram. Forward Reverse Output frequency Fig 6.18 S-curve Characteristic during Operation Switching Preventing the Motor from Stalling During Acceleration (Stall Prevention During Acceleration Function) The Stall Prevention During Acceleration function prevents the motor from stalling if a heavy load is applied to the motor, or sudden rapid acceleration is performed.

  • Page 157
    Time Chart The following figure shows the frequency characteristics when L3-01 is set to 1. Output current Stall level during acceleration L3-02 85% of L3-02 Time Output frequency *1 The acceleration rate is lowered *2 The acceleration rate is stopped to reduce the output current *3 The acceleration is restarted Time Fig 6.19 Time Chart for Stall Prevention During Acceleration…
  • Page 158: Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration Function)

    Preventing Overvoltage During Deceleration (Stall Prevention During Deceleration Function) This function automatically lengthens the deceleration time with respect to the DC-bus voltage to avoid over- voltage tripping. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…

  • Page 159
    Setting Precautions The stall prevention level during deceleration differs depending on the inverter rated voltage and input • voltage. Refer to the following table for details. Inverter Rated/Input Voltage Stall Prevention Level during Deceleration (V) 200 V class E1-01 ≥ 400 V 400 V class E1-01 <…
  • Page 160: Adjusting Frequency References

    Adjusting Frequency References Adjusting Analog Frequency References The analog reference values can be adjusted using the gain and bias functions for the analog inputs. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Frequency reference terminal Sets the frequency as a percentage of the maximum…

  • Page 161
    Refer to Fig 6.22 for adjusting the signal using the gain and bias functions. Frequency reference Frequency reference Terminal A2 input Terminal voltage (current) input voltage 0V (4 mA/0 mA) Terminal A2 input Terminal A1 input Fig 6.22 Terminals A1 and A2 Inputs Adjusting Frequency Bias Using an Analog Input When parameter H3-09 is set to 0 (Frequency Bias), the frequency equivalent to the terminal A2 input voltage is added to A1 as a bias.
  • Page 162: Operation Avoiding Resonance (Jump Frequency Function)

    Operation Avoiding Resonance (Jump Frequency Function) This function allows the prohibition or “jumping” of certain frequencies within the Inverter’s output fre- • quency range so that the motor can operate without resonant oscillations caused by some machine systems. It can also be used for deadband control. •…

  • Page 163: Speed Limit (Frequency Reference Limit Function)

    Speed Limit (Frequency Reference Limit Function) This section explains how to limit the motor speed. Limiting Maximum Output Frequency If you do not want the motor to rotate above a given frequency, use parameter d2-01. Set the upper limit value of the frequency reference as a percentage, taking E1-04 (Maximum Output Fre- quency) to be 100%.

  • Page 164: Frequency Detection

    Frequency Detection Speed Agreement Function There are four different types of frequency detection methods available. The digital multifunction outputs M1 to M4 can be programmed for this function and can be used to indicate a frequency detection or agreement to any external equipment.

  • Page 165
    Time Charts The following table shows the time charts for each of the speed agreement functions. L4-01: Speed Agree Level Related parameter L4-02: Speed Agree Width Agree 1 Freq. Ref. L4-02 Output Frequency Agree Freq. Ref. L4-02 Agree (Multi-function output setting = 2) Agree 1 (ON at the following conditions during frequency agree) L4-02…
  • Page 166: Improved Operating Efficiency

    Improved Operating Efficiency This section explains functions for improving motor operating efficiency. Torque Compensation for Sufficient Torque at Start and Low-speed Operation The torque compensation function detects a rising motor load, and increases the output torque. The inverter calculates the motor primary loss voltage and adjusts the output voltage (V) to compensate insuf- ficient torque at startup and during low-speed operation.

  • Page 167: Hunting-Prevention Function

    Hunting-Prevention Function The hunting-prevention function suppresses hunting when the motor is operating with a light load. If high response has the priority to vibration suppression this function should be disabled (N1-01 = 0). Related Parameters Change Param- Setting Factory during Access eter Name…

  • Page 168: Machine Protection

    Machine Protection Preventing Motor Stalling During Operation Stall prevention during operation prevents the motor from stalling by automatically lowering the Inverter’s output frequency when a transient overload occurs while the motor is operating at a constant speed. If the Inverter output current continues to exceed the setting in parameter L3-06 for 100 ms or longer, the motor speed is reduced.

  • Page 169: Detecting Motor Torque

    Detecting Motor Torque If an excessive load is applied to the machinery (overtorque) or the load suddenly drops (undertorque), you can output an alarm signal to one of the multi-function output terminal M1-M2 or M3-M4. To use the overtorque/undertorque detection function, set B or 17 (overtorque/undertorque detection NO/NC) in one of the parameter H2-01 and H2-02 (multi-function output terminals M1-M2 and M3-M4 function selec- tion).

  • Page 170
    L6-01 Set Value and Operator Display The relationship between alarms displayed on the Digital Operator when overtorque or undertorque is detected and the setting in L6-01 is shown in the following table. Operator Function Overtorque/ Under- Value torque Detection 1 Overtorque/undertorque detection disabled.
  • Page 171: Motor Overload Protection

    Motor Overload Protection The motor can be protected from overload using the Inverter’s built-in electronic thermal overload relay func- tion. Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the motor rated current of motor 1. 0.32 to 1.90 A This set value becomes the base value for motor…

  • Page 172
    Setting Motor Protection Operation Time (L1-02) Set the motor protection operation time in L1-02. The motor protection operation time is the time for that the motor can handle a 150% overload when it was running with the rated load before (i.e. operating temperature was reached before applying the 150% over- load).
  • Page 173: Motor Overheat Protection Using Ptc Thermistor Inputs

    Motor Overheat Protection Using PTC Thermistor Inputs This function provides a motor overheating protection using a thermistor (PTC characteristic – Positive Tem- perature Coefficient) that is built into the windings of each motor phase. Related Parameters Change Param- Setting Factory during Access eter…

  • Page 174
    Operation during Motor Overheating The operation when the motor overheats can be selected using the parameters L1-03 and L1-04. Set the motor temperature input filter time parameter in L1-05. If the motor overheats, the OH3 and OH4 error codes will be displayed on the Digital Operator.
  • Page 175: Limiting Motor Rotation Direction And Output Phase Rotation

    Limiting Motor Rotation Direction and Output Phase Rotation If the motor reverse rotation is prohibited, a reverse run command will not be accepted, even if it is input. Use this setting for applications in which reverse motor rotation can cause problems (e.g., fans, pumps, etc.) It is also possible to change the output phase order by changing b1-04 to 2 or 3.

  • Page 176: Automatic Restart

    Automatic Restart This section explains functions for continuing or automatically restarting Inverter operation after a momentary power loss. Restarting Automatically After Momentary Power Loss After a momentary power loss, the Inverter can be restarted automatically to continue motor operation. To restart the Inverter after power is recovered, set L2-01 to 1 or 2. If L2-01 is set to 1, the inverter will restart, when power is recovered within the time set in L2-02.

  • Page 177: Speed Search

    Speed Search The speed search function finds the actual speed of a motor that is coasting without control, and then starts smoothly from that speed. It is also activated after momentary power loss detection when L2-01 is set to enabled. Related Parameters Change Param-…

  • Page 178
    Multi-function Digital Inputs Set Value Function External search command 1 OFF: Speed search disabled (Start from lowest output frequency) ON: Speed calculation (Calculates the motor speed, and starts search from calculated speed) Current detection (Starts speed search from maximum output frequency) External search command 2 OFF: Speed search disabled (Start from lowest output frequency) ON: Speed calculation (Calculates the motor speed, and starts search from calculated speed) (Same operation as…
  • Page 179
    Speed Search Selection The speed search method can be selected using b3-01. If b3-01 is set to 0 the search method is speed calcula- tion. It has to be activated by a multi-function input (H1- set to 61 or 62). If b3-01 is set to 1, the search method is speed calculation too, but speed search is performed at every RUN command and has not to be activated by a multifunction input.
  • Page 180
    Speed Search after Short Baseblock (during Power Loss Recovery, etc.) Loss Time shorter than the Minimum Baseblock Time (L2-03) • AC power supply Set frequency Start using reference speed detected Output frequency Output current 10 ms *1. After AC power supply recovery, motor waits for the minimum Speed Search Wait Time (b3-05).
  • Page 181
    Speed Search after Short Baseblock (during Power Loss Recovery, etc.) Loss time shorter than minimum baseblock time • AC power supply Output frequency before power loss Set frequency Deceleration time reference set in b3-03 Output frequency b3-02 speed search operating current Output current *1 Baseblock time may be reduced by the output frequency immediately before baseblock.
  • Page 182: Continuing Operation At Constant Speed When Frequency Reference Is Lost

    Continuing Operation at Constant Speed When Frequency Reference Is Lost The frequency reference loss detection function can be used to continue operation at reduced speed using the set value in parameter L4-06 as frequency reference value. When using an analog input as frequency reference source, a frequency reference loss is detected, when the reference value drops over 90 % in 400 ms or less.

  • Page 183: Restarting Operation After Transient Error (Auto Restart Function)

    Restarting Operation After Transient Error (Auto Restart Function) If an Inverter error occurs during operation, the Inverter will perform self-diagnosis. If no error is detected, the Inverter will automatically restart. This is called the auto restart function. The auto restart function can be applied to the following errors. •…

  • Page 184
    Auto Restart External Outputs To output auto restart signals externally, set H2-01 or H2-02 (multi-function contact output terminals M1-M2 or M3-M4 function selection) to 1E (auto restart). Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number…
  • Page 185: Inverter Protection

    Inverter Protection Inverter Overheat Protection The Inverter is protected against overheating using a thermistor that detects the heatsink temperature. When the overheat temperature level is reached the inverter output is switched off. To prevent a suddenly and unexpected stop of the inverter due to an overtemperature, an overheating pre- alarm can be output.

  • Page 186: Ground Fault Protection

    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Allowed DC bus ripple before input phase loss is detected in percent of the OV trip level. Input Phase Loss Detection 0.0 to L8-06 5.0 % Level…

  • Page 187: Setting The Ambient Temperature

    Setting the Ambient Temperature The overload capability of the inverter depends on the ambient temperature. At ambient temperatures higher than 45°C (40°C for IP20/NEMA1 types) the output current capacity is reduced, i.e. the OL2 alarm level will be lowered. Related Parameters Parame- Change Setting…

  • Page 188: Soft Cla Selection

    Soft CLA Selection Soft CLA is a current detection level for the output IGBT protection. Using parameter L8-18 Soft CLA can be enabled or disabled. Related Parameters Parame- Change Setting Factory Access ter Num- Name Description during Range Setting Level Operation 0: Disable L8-18…

  • Page 189: Input Terminal Functions

    Input Terminal Functions Temporarily Switching Operation between Digital Operator and Control Circuit Terminals You can switch the Inverter run command inputs and frequency reference inputs between local (i.e., Digital Operator) and remote (input method set in b1-01 and b1-02). If any input from H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) has been set to 1 (local/remote selection), this input can be used to switch over between local and remote.

  • Page 190: Blocking The Inverter Output (Baseblock Command)

    Blocking the Inverter Output (Baseblock Command) Set 8 or 9 (Baseblock command NO/NC) in one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) to perform baseblock commands using the terminal’s ON/OFF operation, and thereby to block the inverter output. Clear the baseblock command to restart the operation using the speed search method set in b3-01 (speed search selection).

  • Page 191: Drive Enable/Disable

    Drive Enable/Disable If a digital input is programmed for this function (H1- = 6A) the drive can be enabled or disabled by switching the digital input ON/OFF (ON – Drive enabled). If the input is switched OFF while a RUN command is active the inverter will stop using the stopping method set in b1-03.

  • Page 192: Raising And Lowering Frequency References Using Contact Signals (Up/Down)

    Multi-function Digital Inputs (H1-01 to H1-05) Set Value Function Accel./Decel. Ramp Hold Time Chart The time chart when using Acceleration/Deceleration Ramp Hold commands is given below. Power supply Forward/Stop Acceleration/Deceleration Ramp Hold Frequency reference Output frequency Hold Hold Fig 6.37 Acceleration/Deceleration Ramp Hold Raising and Lowering Frequency References Using Contact Signals (UP/ DOWN) The UP and DOWN commands raise and lower Inverter frequency references by turning ON and OFF a multi-…

  • Page 193
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the frequency reference upper limit as a per- Frequency reference upper 0.0 to d2-01 cent, taking the maximum output frequency to be 100.0% limit 110.0…
  • Page 194
    Connection Example and Time Chart The time chart and settings example when the UP command is allocated to the multi-function Digital Input terminal S3, and the DOWN command is allocated to terminal S4, are shown below. Parameter Name Set Value H1-01 Multi-function input (terminal S3) H1-02…
  • Page 195: Trim Control Function (+/- Speed)

    Trim Control Function (+/– Speed) The +/– speed function increments or decrements the frequency reference from analog input by the value set in parameter d4-02 (+/– Speed Limit) using two digital inputs. To use this function, set two of the parameters H1-01 to H1-05 (multi-function contact terminal inputs S3 to S7 function selection) to 1C (Trim Control Increase command) and 1D (Trim Control Decrease command).

  • Page 196: Hold Analog Frequency Using User-Set Timing

    Hold Analog Frequency Using User-set Timing When one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7 function selection) is set to 1E (sample/hold analog frequency command), the analog frequency reference will be held from 100 ms after the terminal is turned ON, and operation will continue at this frequency.

  • Page 197: Switching Operation Source To Communication Option Card

    Switching Operation Source to Communication Option Card The source of frequency reference and RUN command can be switched between a Communication option card and the sources selected in b1-01 and b1-02. Set one of the parameters H1-01 to H1-05 (multi-function digital inputdigital inputs S3 to S7 function selection) to 2 or 36 to enable operation source switchover.

  • Page 198: Auto/Hand Mode Switching By Digital Input

    AUTO/HAND Mode Switching by Digital Input The settings 6D and 6E for H1-01 to H1-05 allow to switch between HAND and AUTO mode by digital input. Both signals cannot both be programmed simultaneously. If the Auto Mode Selection is programmed into a digital input, the Auto mode will be selected whenever that input is closed.

  • Page 199: Stopping The Inverter On External Device Errors (External Error Function)

    Stopping the Inverter on External Device Errors (External Error Function) The external error function activates the error contact output and stops the Inverter operation. Using this func- tion the inverter operation can be stopped on peripheral devices break down or other errors. The digital opera- tor will display EFx (External error [input terminal Sx]).

  • Page 200: Output Terminal Functions

    Output Terminal Functions The digital multifunction outputs can be set for several functions using the H2-01 and H2-02 parameters (ter- minal M1 to M4 function selection). These functions are described in the following section. Related Parameters Parame- Change Setting Factory Access ter Num- Name…

  • Page 201
    Zero Speed (Setting: 1) The output frequency is higher than the zero speed level (b2-01). The output frequency is lower than the zero speed level (b2-01). Output frequency Zero speed level (b2-01) Zero-speed output Fig 6.42 Timing Chart for Zero-speed Inverter Operation Ready (Setting: 6) If a multifunction output is programmed for this function the output will be switched ON when the initialisa- tion of the inverter at startup has finished without any faults.
  • Page 202
    Fault Reset Command Active (Setting: 11) If a multifunction output is set for this function the output is switched ON as long as a fault reset command is input at one of the digital inputs. Reverse Direction (Setting: 1A) If a multifunction output is programmed for this function the output is switched ON whenever the drive is turning the motor in the direction that corresponds to reverse direction.
  • Page 203: Monitor Parameters

    Monitor Parameters This section explains the analog monitor and pulse monitor parameters. Using the Analog Monitor Parameters Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Monitor selection (terminal Sets the number of the monitor item to be output H4-01 1 to 38 (U1-…

  • Page 204
    Adjusting the Meter The influence of the settings of gain and bias on the analog output channel is shown on three examples in 6.50. Output voltage Gain: 170% Bias: Gain: 100% Bias: Gain: Bias: 100% Monitor item (e.g. Output Frequency) 100% Fig 6.43 Monitor Output Adjustment…
  • Page 205: Individual Functions

    Individual Functions Using MEMOBUS Communications You can perform serial communications with Programmable Logic Controls (PLCs) or similar devices using the MEMOBUS protocol. MEMOBUS Communications Configuration MEMOBUS communications are configured using 1 master (PLC) and a maximum of 31 slaves. Serial com- munications between master and slave are normally started by the master and the slaves respond.

  • Page 206
    Communications Connection Terminal The MEMOBUS communications use the following terminals: S+, S-, R+, and R-. Enable the terminating resistance by turning ON pin 1 of switch S1 for the last Inverter (seen from the PLC) only. Terminating re- RS-422A or sistance RS-485 Terminating resistance (1/2W, 110 Ohms)
  • Page 207
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the frequency reference input source 0: Digital Operator b1-01 Reference source selection 1: Control circuit terminal (analog input) 0 to 3 2: MEMOBUS communications 3: Option Card Sets the run command input source 0: Digital Operator…
  • Page 208
    Message Format In MEMOBUS communications, the master sends commands to the slave, and the slave responds. The mes- sage format is configured for both sending and receiving as shown below, and the length of data packets depends on the command (function) content. Slave address Function code Data…
  • Page 209
    Error Check Errors during communications are detected using CRC-16 (cyclic redundancy check, checksum method). The result of the checksum calculation is stored in a data-word (16 bit), which starting value is FFFH. The value of this word is manipulated using Exclusive OR- and SHIFT operations together with the data package that should be sent (slave address, function code, data) and the fixed value A001H.
  • Page 210
    The following example clarifies the calculation method. It shows the calculation of a CRC-16 code with the slave address 02H (0000 0010) and the function code 03H (0000 0011). The resulting CRC-16 code is D1H for the lower and 40H for the higher byte. The example calculation in this example is not done completely (normally data would follow the function code).
  • Page 211
    MEMOBUS Message Example An example of MEMOBUS command/response messages is given below. Reading Inverter Memory Register Contents The content of maximum 16 inverter memory registers can be readout at a time. Among other things the command message must contain the start address of the first register that is to be read out and the quantity of registers that should be read out.
  • Page 212
    Loopback Test The loopback test returns command messages directly as response messages without changing the contents to check the communications between the master and slave. You can set user-defined test code and data values. The following table shows a message example when performing a loopback test with the slave no. 1. Response Message Response Message Command Message…
  • Page 213
    Data Tables The data tables are shown below. The types of data are as follows: Reference data, monitor data, and broadcast data. Reference Data The reference data table is shown below. These data can be read and written. They cannot be used for monitor- ing functions.
  • Page 214
    Monitor Data The following table shows the monitor data. Monitor data can only be read. Register No. Contents Inverter status signal Bit 0 During run Bit 1 Zero speed Bit 2 During reverse operation Bit 3 Reset signal active 0010H Bit 4 During speed agree Bit 5…
  • Page 215
    Register No. Contents Fault Content 2 Bit 0 EF3, External fault set on terminal S3 Bit 1 EF4, External fault set on terminal S4 Bit 2 EF5, External fault set on terminal S5 Bit 3 EF6, External fault set on terminal S6 Bit 4 EF7, External fault set on terminal S7 Bit 5…
  • Page 216
    Register No. Contents Alarm Content 1 Bit 0 UV, DC bus undervoltage Bit 1 OV, DC bus overvoltage Bit 2 OH, Inverter heatsink overheat pre-alarm Bit 3 OH2, Inverter overheat alarm input by a digital input Bit 4 OL3, Overtorque detection 1 Bit 5 Not used Bit 6…
  • Page 217
    Register No. Contents Error details Bit 0 Overcurrent (OC), Ground fault (GF) Bit 1 Main circuit overvoltage (OV) Bit 2 Inverter overload (OL2) Bit 3 Inverter overheat (OH1, OH2) Bit 4 Not used Bit 5 Fuse blown (PUF) Bit 6 PI feedback lost (FbL) Bit 7 External error (EF, EFO)
  • Page 218
    Register No. Contents Inverter status Bit 0 Operation 1: Operating Bit 1 Zero speed 1: Zero speed Bit 2 Frequency agree 1: Agreement Bit 3 User-defined speed agree 1: Agreement 1: Output frequency ≤ L4-01 Bit 4 Frequency detection 1 1: Output frequency ≥…
  • Page 219
    Broadcast Data Using broadcast data a command can be given to all slaves at the same time. The slave address in the com- mand message must be set to 00H. All slaves will receive the message. They will not respond. The following table shows the broadcast data.
  • Page 220
    ENTER Command When writing parameters to the Inverter from the PLC using MEMOBUS communications, the parameters are temporarily stored in the parameter data area in the Inverter. To enable these parameters the ENTER command must be used. There are two types of ENTER commands: ENTER commands that enable parameter data in RAM, and ENTER commands that write data to EEPROM (non-volatile memory) in the Inverter at the same time as enabling the data in RAM.
  • Page 221
    Slave Not Responding In the following cases, the slave will ignore the write function. When a communications error (overrun, framing, parity, or CRC-16) is detected in the command message. • When the slave address in the command message and the slave address in the Inverter do not agree. •…
  • Page 222: Using The Timer Function

    Using the Timer Function The multi-function digital input terminals S3 to S7 can be used as timer function input terminals, and multi- function output terminals M1-M2 and M3-M4 can be used as timer function output terminals. By setting the delay time, you can prevent chattering of the sensors and switches. Set one of the parameters H1-01 to H1-05 (multi-function digital input terminal S3 to S7) to 18 (timer •…

  • Page 223: Using Pi Control

    Using PI Control PI control is a method of making the feedback value (detection value) match the set target value. By combin- ing proportional control (P) and integral control (I), you can even control system with load fluctuation. The characteristics of the PI control operations are given below. The output of a P-element is proportional to the input (deviation).

  • Page 224
    Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion 0: Disabled b5-01 PI control mode selection 1: Enabled 0, 1, 3 3: PI control enabled (frequency reference + PI output) 0.00 Sets P-control proportional gain. b5-02 Proportional gain (P) 1.00…
  • Page 225
    Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the unit for b5-19, U1-38 and U1-24 0: 0.01 Hz 1: 0.01% (the maximum output frequency E1-04 is taken as 100%. 2 – 39: rpm, set value is equal to motor poles 40 –…
  • Page 226
    Multi-Function Digital Inputs (H1-01 to H1-05) Set Value Function PI control disable (ON: PI control disabled) PI control integral reset (reset when reset command is input or when stopped during PI control) PI control integral hold (ON: Integral hold) PI soft starter PI input characteristics switch Multi-Function Analog Input (H3-09) Set Value…
  • Page 227
    PI Feedback Input Methods Select one of the following PI control feedback input methods Input Method Setting Conditions Analog input A2 Set H3-09 (Multi-function Analog Input Terminal A2 Selection) to B (PI feedback). Analog input A1 (Differential Set H3-09 to 16. Analog input A1 becomes the feedback 1 input and the analog input A2 Mode) becomes the feedback 2 input.
  • Page 228
    Suppressing Long-cycle Vibration If vibration occurs with a longer cycle than the integral time (I) set value, lengthen the integral time (I) to sup- press the vibration. Response Before adjustment After adjustment Time Suppressing Short Cycle Vibration If short cycle vibration occurs reduce the proportional gain (P), or increase the PI primary delay time constant. Response Before adjustment After adjustment…
  • Page 229
    PI Control Block The following diagram shows the PI control block in the Inverter. Fig 6.50 PI Control Block Diagram…
  • Page 230
    PI Feedback Loss Detection When performing PI control, be sure to use the PI feedback loss detection function. Otherwise if the PI feed- back gets lost, the Inverter output frequency may accelerate to the maximum output frequency. When b5-12 is set to 1 and the PI feedback value falls below the PI feedback loss detection level (b5-13) for a time longer than the PI feedback loss detection time (b5-14), a Fbl alarm (Feedback loss) will be displayed at the operator and inverter operation is continued.
  • Page 231
    PI Snooze Function By setting b5-21 to 2 the PI snooze function can be enabled. This software observes the output frequency (Softstarter output) and the PI feedback value to turn the inverter ON and OFF automatically as the system requires. Snooze Activation •…
  • Page 232
    Square Root Feedback Operation If parameter b5-28 is set to 1 the feedback value is converted into a value that equals the square root of the actual feedback. This can be used to control the flow rate when a pressure sensor is used to generate a feed- back value.
  • Page 233: Energy-Saving

    Energy-saving To perform energy saving, set b8-01 (Energy Saving Mode Selection) to 1. Related Parameters Chang Param- e Dur- Setting Factory Access eter Name Details Range Setting Level Number Opera- tion Select whether to enable or disable energy-saving control. b8-01 Energy-saving mode selection 0 or 1 0: Disable…

  • Page 234: Setting Motor Parameters

    Setting Motor Parameters Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the motor rated current. 0.32 to This set value will become the reference value for 1.90 A E2-01 Motor rated current 6.40 motor protection and torque limits.

  • Page 235: Setting The V/F Pattern

    Setting the V/f Pattern Using the E1- parameters the Inverter input voltage and the V/f pattern can be set as needed. It is not rec- ommended to change the settings when the motor is used in open loop vector control mode. Related Parameters Change Param-…

  • Page 236
    Characteristic Application Specifications Value 0 (F) 50 Hz specifications These patterns are used in general applications 60 Hz specifications Constant Torque where the load torque is fixed, regardless of rota- Characteristic 60 Hz specifications, voltage saturation at 50 Hz tion speed, e.g. for linear transport systems. 72 Hz specifications, voltage saturation at 60 Hz 50 Hz specifications, cubical torque characteris- 50 Hz specifications, quadratic torque character-…
  • Page 237
    0.4 to 1.5 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 238
    2.2 to 45 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 239
    55 to 300 kW V/f Pattern The diagrams show characteristics for a 200-V class motor. For a 400-V class motor, multiply all voltages by 2. Constant Torque Characteristics (Set Value: 0 to 3) • Set Value 0 50 Hz Set Value 1 60 Hz Set Value 2 60 Hz…
  • Page 240
    When E1-03 is set to F (User-defined V/f pattern), you can set the parameters E1-04 to E1-10. If E1-03 is set to anything other than F, you can only read parameters E1-04 to E1-10. If the V/f characteristics INFO are linear, set E1-07 and E1-09 to the same value. In this case, E1-08 will be ignored. Output voltage (V) Frequency (Hz) Fig 6.54 User-Set V/f Pattern…
  • Page 241: High Slip Braking

    High Slip Braking If the load inertia is large the high slip braking function can be used to shorten the deceleration time compared to the normal deceleration time without using a braking option, e.g. for emergency stops. The function must be activated by a multifunction input. Note the following: The HSB function is not comparable with the normal deceleration function.

  • Page 242: Digital Operator Functions

    Digital Operator Functions Setting Digital Operator Functions Related Parameters Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Set the number of the 3rd. monitor item to be dis- played in the Drive Mode. (U1- o1-01 Monitor selection 4 to 33…

  • Page 243
    Change Param- Setting Factory during Access eter Name Description Range Setting Opera- Level Number tion Sets the operation when the Digital Operator is dis- connected. 0: Disabled (Operation continues even if the Dig- Operation selection when dig- ital Operator is disconnected.) o2-06 0 or 1 ital operator is disconnected…
  • Page 244
    Disabling the LOCAL/REMOTE Key (o2-01) Set o2-01 to 0 to disable the LOCAL/REMOTE Key on the Digital Operator. If the key is disabled, it cannot be used anymore to switch over the frequency reference source or the RUN command source between LOCAL and REMOTE. Disabling the STOP Key (o2-02) This parameter is used to set whether the STOP key on the operator is active during remote control (b1-02 ≠…
  • Page 245: Copying Parameters

    Energy Monitor Initialize (o2-14) This function can be used to initialize the energy monitor by setting parameter o2-14 to 1. HAND Key Funktion Selection (o2-15) With this parameter the HAND key can be enabled by setting parameter o2-15 to 1. The factory setting is 0, HAND key disabled.

  • Page 246
    Storing Inverter set values in the Digital Operator (READ) To store Inverter set values in the Digital Operator use the following method. Step Digital Operator Display Explanation Press the MENU key, and select advanced program- ming mode. Press the DATA/ENTER key to enter programming mode.
  • Page 247
    Writing Parameter Set Values Stored in the Digital Operator to the Inverter (COPY) To write parameter set values stored in the Digital Operator to the Inverter, use the following method. Step Digital Operator Display Explanation Press the MENU key, and select advanced program- ming mode.
  • Page 248
    Comparing Inverter Parameters and Digital Operator Parameter Set Values (VERIFY) To compare Inverter parameters and Digital Operator parameter set values, use the following method. Step Digital Operator Display Explanation Press the MENU key. and select advanced program- ming mode. Press the DATA/ENTER key to enter the parameters monitor display.
  • Page 249: Prohibiting Writing Parameters From The Digital Operator

    Prohibiting Writing Parameters from the Digital Operator If you set A1-01 to 0, all parameters except A1-01 and A1-04 are write protected, U1- , U2- , and U3- will be displayed. If A1-01 is set to 1, only the parameters A1-01, A1-04 and A2- can be read or written, U1- , U2-…

  • Page 250: Displaying User-Set Parameters Only

    Displaying User-set Parameters Only The A2 parameters (user-set parameters) and A1-01 (parameter access level) can be used to establish a param- eter set that contains only the most important parameters. Set the number of the parameter to which you want to refer in A2-01 to A2-32, and then set A1-01 to 1. Using the advanced programming mode you can read and modify A1-01 to A1-03 and the parameters set in A2-01 to A2-32 only.

  • Page 252: Troubleshooting

    Troubleshooting This chapter describes the fault displays and countermeasure for Inverter and motor problems. Protective and Diagnostic Functions……..7-2 Troubleshooting …………..7-12…

  • Page 253: Protective And Diagnostic Functions

    Protective and Diagnostic Functions This section describes the alarm functions of the Inverter. The alarm functions include fault detection, alarm detection, operation error detection, and autotuning error detection. Fault Detection When the Inverter detects a fault, the fault contact output operates, and the Inverter output is switched OFF causing the motor to coast to stop.

  • Page 254
    Display Meaning Probable Causes Corrective Actions Main Circuit Undervoltage The main circuit DC voltage is below the Undervoltage Detection • An open-phase error occurred at the Level (L2-05). input power supply. 200 V class: Approx. 190 V • A momentary power loss occurred. 400 V class: Approx.
  • Page 255
    Display Meaning Probable Causes Corrective Actions The load is too heavy. The accelera- Check the size of the load and the tion time, deceleration time, and cycle length of the acceleration, deceler- Motor Overload time are too short. ation, and cycle times. The motor overload protection The V/f characteristics voltage is too function has operated based on the…
  • Page 256
    Display Meaning Probable Causes Corrective Actions MEMOBUS Communications Check the communications Error devices and communications sig- A normal receive was not possible – nals. for 2 s or longer after control data were received once. Option Communications Error A communications error was Check the communications detected during a run command or devices and communications sig-…
  • Page 257
    Display Meaning Probable Causes Corrective Actions The Option Card is not connected Turn off the power and insert the properly. Card again. Communications Option Card A/D converter error The Option Card’s A/D converter is Replace the Communications faulty. Option Card. Communications Option Card self diagnostic error Communications Option Card…
  • Page 258: Alarm Detection

    (blink- Replace the cooling fan. (Contact cooling fin exceeded the setting in ing) The Inverter cooling fan has stopped. your Omron Yaskawa Motion Con- L8-02. trol representative.) Check the size of the load and the length of the acceleration, decelera- Motor overheating tion, and cycle times.

  • Page 259
    Display Meaning Probable causes Corrective Actions External fault (Input terminal S3) (blink- ing) External fault (Input terminal S4) (blink- ing) An external fault was input from a Remove the cause of the external External fault (Input terminal S5) multi-function input terminal (S3 to (blink- fault.
  • Page 260: Operation Errors

    Operation Errors An operation error will occur if there is an invalid setting or a contradiction between two parameter settings. It won’t be possible to start the Inverter until the parameters have been set correctly. (The alarm output and fault contact outputs will not operate.) When an operation error has occurred, refer to the following table to identify and correct the cause of the errors.

  • Page 261: Errors During Autotuning

    Errors During Autotuning The errors that can occur during autotuning are given in the following table. If an error is detected, the motor will coast to a stop and an error code will be displayed on the Digital Operator. The error contact output and alarm output will not function.

  • Page 262
    Func- Display Meaning Probable causes Corrective Actions tion Use the copy function for the same The Inverter product code or soft- ID does not match product code and software number ware number is different. only. The capacity of the Inverter being Inverter capacity Use the copy function for the same copied and the capacity stored in the…
  • Page 263: Troubleshooting

    Troubleshooting Due to parameter setting errors, faulty wiring, and so on, the Inverter and motor may not operate as expected when the system is started up. If that occurs, use this section as a reference and perform the appropriate counter measures. If the contents of the fault are displayed, refer to Protective and Diagnostic Functions.

  • Page 264: If The Motor Does Not Operate

    If the Motor Does Not Operate The motor does not operate when the RUN key on the Digital Operator is pressed. The following causes are possible. The operation method setting is wrong. If parameter b1-02 (Operation Method Selection) is set to 1 (control circuit terminal), the motor will not oper- ate when the RUN key is pressed.

  • Page 265: If The Direction Of The Motor Rotation Is Reversed

    The frequency reference is too low. If the frequency reference is set below the frequency set in E1-09 (Minimum Output Frequency), the Inverter will not operate. Raise the frequency reference to at least the minimum output frequency. The motor stops during acceleration or when a load is connected. The load may be too heavy.

  • Page 266: If Motor Deceleration Is Slow

    A signal is being input to the multifunction analog input terminal A2. When “0” (frequency bias) is set for parameter H3-09 (Multi-function Analog Input Terminal A2 Function Selection), a frequency corresponding to the terminal A2 input voltage (current) is added to the frequency ref- erence.

  • Page 267: If Peripheral Devices Like Plc’s Or Other Are Influenced By The Starting Or Running Inverter

    If peripheral devices like PLC’s or other are influenced by the starting or running inverter If electrical noise is generated by Inverter perform the following countermeasures: Change the Inverter’s Carrier Frequency Selection (C6-02) to lower the carrier frequency. • Install an Input Noise Filter at the Inverter’s power supply input. •…

  • Page 268: If The Motor Rotates Even When Inverter Output Is Stopped

    If the Motor Rotates Even When Inverter Output is Stopped If the motor coasts at low speed after a deceleration to stop has been executed, it means that the DC injection braking is not decelerating enough. Adjust the DC injection braking as follows: Increase the parameter b2-02 (DC Injection Braking Current) setting.

  • Page 270: Maintenance And Inspection

    Maintenance and Inspection This chapter describes basic maintenance and inspection for the Inverter. Maintenance and Inspection ……….8-2…

  • Page 271: Maintenance And Inspection

    Maintenance and Inspection Outline of Maintenance The maintenance period of the Inverter is as follows: Maintenance Period: Within 18 months from shipping from the factory or within 12 months from being deliv- ered to the final user, whichever comes first. Daily Inspection Check the following items with the system in operation.

  • Page 272: Periodic Maintenance Of Parts

    Periodic Maintenance of Parts The Inverter consists of many parts, and these parts must be operating properly in order to ensure full func- tioning of the Inverter. Among the electronic components, there are some that require maintenance depending on their usage condi- tions.

  • Page 273: Cooling Fan Replacement Outline

    Cooling Fan Replacement Outline 200 V and 400 V Class Inverters of 18.5 kW or Less A cooling fan is attached to the bottom of the Inverter. If the Inverter is installed using the mounting holes on the back of the Inverter, the cooling fan can be replaced without removing the Inverter from the installation panel.

  • Page 274
    200 V and 400 V Class Inverters of 22 kW or More A cooling fan is attached to the top panel inside the Inverter. The cooling fan can be replaced without removing the Inverter from the installation panel. Removing the Cooling Fan 1.
  • Page 275: Removing And Mounting The Control Circuit Terminal Card

    Removing and Mounting the Control Circuit Terminal Card Removing the Control Circuit Terminal Card 1. Remove the Digital Operator and front cover. 2. Remove the connecting line connectors connected to FE and NC on the control circuit terminal card. 3. Loosen the mounting screws (1) on the left and right sides of the control terminals until they are free. (It is not necessary to remove these screws completely.

  • Page 276: Specifications

    Specifications This chapter describes the basic specifications of the Inverter and specifications for options and peripheral devices. Standard Inverter Specifications ……….9-2…

  • Page 277: Standard Inverter Specifications

    Standard Inverter Specifications The standard Inverter specifications are listed by capacity in the following tables. Specifications by Model Specifications are given by model in the following tables. 200V Class Model Number 20P4 20P7 21P5 22P2 23P7 25P5 27P5 2011 2015 2018 2022 2030…

  • Page 278
    400 V Class Model Number 40P4 40P7 41P5 42P2 43P7 44P0 45P5 47P5 4011 4015 4018 CIMR-E7Z Max. applicable motor output 0.55 0.75 18.5 (kW) Rated output capacity (kVA) Rated output current (A) 12.5 Max. output voltage (V) 3-phase; 380, 400, 415, 440, 460, or 480 VAC (Proportional to input voltage.) Max.
  • Page 279: Common Specifications

    Common Specifications The following specifications apply to both 200 V and 400 V Class Inverters. Model Number Specification CIMR-E7Z Sine wave PWM Control method V/f control Speed control range 1:40 Speed control accuracy ±3 (25°C ± 10°C) Frequency control range 0.0to 200.0 Hz Digital references: ±…

  • Page 280: Appendix

    Appendix This chapter provides precautions for the Inverter, motor, and peripheral devices and also provides lists of parameters. Inverter Application Precautions ……….10-2 Motor Application Precautions ……….10-5 User Parameters…………..10-7…

  • Page 281: Inverter Application Precautions

    If a large initial torque is required, select an Inverter with a somewhat larger capacity or increase the capacity of both, the motor and the inverter. Options Terminals 3 are for connecting only the options specifically provided by Omron Yaskawa Motion Control. Never connect any other devices to these terminals.

  • Page 282: Installation

    Installation Observe the following precautions when installing an Inverter. Installation in Enclosures Either install the Inverter in a clean location where it is not subjected to oil mist, dust, and other contaminants, or install the Inverter in a completely enclosed panel. Provide cooling measures and sufficient panel space so that the temperature surrounding the Inverter does not go beyond the allowable temperature.

  • Page 283: Handling

    Handling Observe the following precautions when wiring or performing maintenance for an Inverter. Wiring Check The Inverter will be internally damaged if the power supply voltage is applied to output terminal U, V, or W. Check wiring for any mistakes before supplying power. Check all wiring and control sequences carefully. Magnetic Contactor Installation Do not start and stop operation frequently with a magnetic contactor installed on the power supply line.

  • Page 284: Motor Application Precautions

    Installation Withstand Voltage If the input voltage is high (480 V or higher) or the wiring distance is long, the motor insulation voltage must be considered. Contact your Omron Yaskawa Motion Control representative for details. Acoustic Noise Noise varies with the carrier frequency. At high carrier frequencies, the noise is almost the same when the motor is operated with a commercial power supply.

  • Page 285: Power Transmission Mechanism (Speed Reducers, Belts And Chains)

    Power Transmission Mechanism (Speed Reducers, Belts and Chains) If an oil-lubricated gearbox or speed reducer is used in the power transmission mechanism, oil lubrication will be affected when the motor operates only in the low speed range. The power transmission mechanism will make noise and experience problems with service life and durability if the motor is operated at low speeds continuously.

  • Page 286: User Parameters

    User Parameters Factory settings are given in the following table. These are factory settings for a 200 V Class Inverter with 0.4 kW (open loop vector control). Factory Name Setting Setting A1-00 Language selection for digital operator display (JVOP-160-OY) A1-01 Parameter access level A1-03 Initialize…

  • Page 287
    Factory Name Setting Setting b5-17 Acceleration/deceleration time for PI reference 0.0 s b5-18 PI Setpoint Selection b5-19 PI Setpoint 0.0% b5-20 PI Setpoint Scaling b5-21 PI Sleep Function Selection b5-22 Snooze Level b5-23 Snooze Delay Time b5-24 Wake Up-level b5-25 Setpoint Boost b5-26 Maximum Boost Time…
  • Page 288
    Factory Name Setting Setting d4-01 Frequency reference hold function selection d4-02 + — Speed limits E1-01 Input voltage setting 200 V E1-03 V/f pattern selection E1-04 Max. output frequency 50.0 Hz E1-05 Max. voltage 200.0 V E1-06 Base frequency 50.0 Hz E1-07 Mid.
  • Page 289
    Factory Name Setting Setting H4-07 Analog output 1 signal level selection H4-08 Analog output 2 signal level selection H5-01 Station address H5-02 Communications speed selection H5-03 Communications parity selection H5-04 Stopping method after communications error H5-05 Communications error detection selection H5-06 Send wait time 5 ms…
  • Page 290
    Factory Name Setting Setting L8-18 Soft CLA selection L8-19 Frequency reference during OH pre-alarm 20.0% N1-01 Hunting-prevention function selection N1-02 Hunting-prevention gain 1.00 N3-01 High-slip braking deceleration frequency width N3-02 High-slip braking current limit 150% N3-03 High-slip braking stop dwell time 1.0 s N3-04 High-slip braking OL time…

Возможно, вам также будет интересно:

  • Omron sgdh 10de oy коды ошибок
  • Omron r88d kt50f ошибки
  • Omron r88d kt15f коды ошибок
  • Omron r88d gp08h ошибки
  • Omron r88d 1sn коды ошибок

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии