Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

. (2.14)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.

Общий вид мультипликативной модели выглядит так:

. (2.15)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1) Выравнивание исходного ряда методом скользящей средней.

2) Расчет значений сезонной компоненты .

3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.

4) Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.

5) Расчет полученных по модели значений () или ().

6) Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Методику построения аддитивной модели рассмотрим в данном разделе методического пособия.

Пример. Построение аддитивной модели временного ряда. Обратимся к данным об объеме правонарушений на таможне за четыре года, представленным в табл. 2.1.

Как видно из табл. 2.1, данный временной ряд содержит сезонные колебания периодичностью 4, т. к. количество правонарушений в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 2.2).

Таблица 2.1

Год

Квартал

Количество возбужденных дел,

1999

I

1

375

II

2

371

III

3

869

IV

4

1015

2000

I

5

357

II

6

471

III

7

992

IV

8

1020

2001

I

9

390

II

10

355

III

11

992

IV

12

905

2002

I

13

461

II

14

454

III

15

920

IV

16

927

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.2). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.2).

Таблица 2.2

№ квартала,

Количество правонарушений,

Итого за четыре квартала

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

213,75

4

1015

2712

678

665,5

349,5

5

357

2835

708,75

693,75

-336,75

6

471

2840

710

709,375

-238,375

7

992

2873

718,25

714,125

277,875

8

1020

2757

689,25

703,75

316,25

9

390

2757

689,25

689,25

-299,25

10

355

2642

660,5

674,875

-319,875

11

992

2713

678,25

669,375

322,625

12

905

2812

703

690,625

214,375

13

461

2740

685

694

-233

14

454

2762

690,5

687,75

-233,75

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 2.2). Используем эти оценки для расчета значений сезонной компоненты (табл. 2.3). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 2.3

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 6.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 2.4). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 2.4).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 2.4).

Таблица 2.4

1

2

3

4

5

6

7

8

1

375

-292,448

667,448

672,700

380,252

-5,252

27,584

2

371

-266,781

637,781

673,624

406,843

-35,843

1284,721

3

869

268,636

600,364

674,547

943,183

-74,183

5503,117

4

1015

290,593

724,407

675,470

966,063

48,937

2394,830

5

357

-292,448

649,448

676,394

383,946

-26,946

726,087

6

471

-266,781

737,781

677,317

410,536

60,464

3655,895

7

992

268,636

723,364

678,240

946,876

45,124

2036,175

8

1020

290,593

729,407

679,163

969,756

50,244

2524,460

9

390

-292,448

682,448

680,087

387,639

2,361

5,574

10

355

-266,781

621,781

681,010

414,229

-59,229

3508,074

11

992

268,636

723,364

681,933

950,569

41,431

1716,528

12

905

290,593

614,407

682,857

973,450

-68,450

4685,403

13

461

-292,448

753,448

683,780

391,332

69,668

4853,630

14

454

-266,781

720,781

684,703

417,922

36,078

1301,622

15

920

268,636

651,364

685,627

954,263

-34,263

1173,953

16

927

290,593

636,407

686,550

977,143

-50,143

2514,320

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Рис. 28. График фактических уровней временного ряда

И теоретических, полученных по аддитивной модели.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,

;

.

Т. е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно. Построение мультипликативной модели проводится по той же схеме, что и построение аддитивной модели.

Вопросы для самопроверки

1. В каких случаях для прогнозирования применяют методы прямой экстраполяции?

2. Когда для прогнозирования можно использовать модель тренда?

3. Какие модели трендов обычно используются при прогнозировании в экономике?

4. Перечислите этапы прогнозирования экономических показателей с применением моделей тренда.

5. Что понимают под адекватностью и точностью модели прогнозировании? Как можно проверить адекватность и точность модели прогнозирования?

6. Поясните, почему при прогнозировании наряду с точечным прогнозом рассчитывают и интервальный прогноз?

7. Что такое коэффициент автокорреляции? Как он рассчитывается и что он показывает?

8. Для чего используется критерий Дарбина-Уотсона в моделях временных рядов?

9. Что такое коррелограмма?

10. Поясните технологию расчета точечного интервального прогнозов при использовании моделей тренда.

< Предыдущая   Следующая >

Автокорреляционная функция и аддитивная модель временного ряда

Краткая теория


При
наличии во временном ряде тенденции и циклических колебаний значения каждого
последующего уровня ряда зависят от предыдущих.
Корреляционную зависимость между последовательными уровнями временного ряда
называют автокорреляцией уровней ряда. Количественно ее можно измерить с
помощью линейного коэффициента корреляции между уровнями исходного временного ряда
и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число
периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом.
С увеличением лага число пар значений, по которым рассчитывается коэффициент
автокорреляции, уменьшается. Некоторые авторы считают целесообразным для
обеспечения статистической достоверности коэффициентов автокорреляции
использовать правило – максимальный лаг должен быть не больше

.

Отметим
два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии
с линейным коэффициентом корреляции и таким образом характеризует тесноту
только линейной связи текущего и предыдущего уровней ряда. Поэтому по
коэффициенту автокорреляции можно судить о наличии линейной (или близкой к
линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную
тенденцию (например, параболу второго порядка или экспоненту), коэффициент
автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых,
по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или
убывающей тенденции в уровнях ряда. Большинство временных рядов экономических
данных содержит положительную автокорреляцию уровней, однако при этом могут
иметь убывающую тенденцию.

Последовательность
коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют
автокорреляционной функцией временного рада. График зависимости ее значений от
величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ
автокорреляционной функции и коррелограммы позволяет
определить лаг, при котором автокорреляция наиболее высокая, а
следовательно, и лаг, при котором связь между текущим и предыдущими уровнями
ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если
наиболее высоким оказался коэффициент автокорреляции первого порядка,
исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался
коэффициент автокорреляции порядка

, ряд содержит
циклические колебания с периодичностью в

 моментов времени.
Если ни один из коэффициентов автокорреляции не является значимым, можно
сделать одно из двух предположений относительно структуры этого ряда: либо ряд
не содержит тенденции и циклических колебаний, либо ряд содержит сильную
нелинейную тенденцию, для выявления которой нужно провести дополнительный
анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию
целесообразно использовать для выявления во временном ряде наличия или
отсутствия трендовой компоненты (

)
и
циклической (сезонной) компоненты (

).

Существует несколько подходов к
анализу структуры временных рядов, содержащих сезонные или циклические
колебания. Простейший подход — расчет значений сезонной компоненты методом
скользящей средней и построение аддитивной или мультипликативной модели
временного ряда. Общий вид аддитивной модели следующий:

Эта модель
предполагает, что каждый уровень временного ряда может быть представлен как
сумма трендовой

,
сезонной

 и случайной

 компонент. Общий вид
мультипликативный модели выглядит так:

Эта модель
предполагает, что каждый уровень временного ряда может быть представлен как
произведение трендовой

,
сезонной

 и случайной

 компонент. Выбор одной из двух моделей
осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда
колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в
которой значения сезонной компоненты предполагаются постоянными для различных
циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят
мультипликативную модель временного ряда, которая ставит уровни ряда в
зависимость от значений сезонной компоненты.

Построение аддитивной и
мультипликативной моделей сводится к расчету значений

 и

 для каждого уровня ряда.

Процесс построения
модели включает в себя следующие шаги.

1. Выравнивание
исходного ряда методом скользящей средней.

2. Расчет значений
сезонной компоненты

.

3. Устранение сезонной
компоненты из исходных уровней ряда и получение выравненных данных

 в аддитивной или

 в мультипликативной модели.

4. Аналитическое
выравнивание уровней

 или

 и расчет значений

 с использованием полученного уравнения тренда.

5. Расчет полученных по
модели значений

 или

.

6. Расчет абсолютных
и/или относительных ошибок.

Если полученные
значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни
ряда и в дальнейшем использовать временной ряд ошибок

 для анализа взаимосвязи исходного ряда и
других временных рядов.

Пример решения задачи


Задача

Имеются
условные данные об объемах потребления электроэнергии

 жителями региона за 16 кварталов.

Требуется:

1.
Построить автокорреляционную функцию и сделать вывод о наличии сезонных
колебаний.

2.
Построить аддитивную модель временного ряда (для нечетных вариантов) или
мультипликативную модель временного ряда (для четных вариантов).

3.
Сделать прогноз на 2 квартала вперед.

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь — свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

1) Построим поле корреляции:

Поле корреляции

Уже
исходя из графика видно, что значения

 образуют пилообразную фигуру. Рассчитаем несколько
последовательных коэффициентов автокорреляции. Для этого составляем первую
вспомогательную таблицу:

Следует
заметить. что среднее
значение получается путем деления не на 16, а на 15, так как у нас теперь на
одно наблюдение меньше.

Коэффициент
автокорреляции первого порядка:

Составляем
вспомогательную таблицу для расчета коэффициента автокорреляции второго
порядка:

Следовательно:

Аналогично
находим коэффициенты автокорреляции более высоких порядков, а все полученные
значения заносим в сводную таблицу:

Коэффициенты автокорреляции

Лаг Коэффициент
автокорреляции уровней
1 0.180
2 -0.542
3 0.129
4 0.980
5 0.987
6 -0.686
7 0.019
8 0.958
9 0.117
10 -0.707
11 -0.086
12 0.937

Коррелограмма

Анализ
коррелограммы и графика исходных уровней временного
ряда позволяет сделать выводы о наличии в изучаемом временном ряде сезонных
колебаний периодичностью в четыре квартала.

2)  Проведем выравнивание исходных уровней ряда
методом скользящей средней. Для этого:

Просуммируем
уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент
времени и определим условные годовые объемы потребления электроэнергии.

Разделив
полученные суммы на 4, найдем скользящие средние. Полученные таким образом
выровненные значения уже не содержат сезонной компоненты.

Приведем
эти значения в соответствие с фактическими моментами времени, для чего найдем
средние значения из двух последовательных скользящих средних – центрированные
скользящие средние.

Расчет сезонной компоненты

Итого за четыре квартала Скользящая средняя за
четыре квартала
Центрированая скользящая
средняя
Оценка сезонной
компоненты
1 5.5
2 4.8 24.4 6.1
3 5.1 26 6.5 6.300 -1.200
4 9 26.1 6.525 6.513 2.488
5 7.1 27.1 6.775 6.650 0.450
6 4.9 28.1 7.025 6.900 -2.000
7 6.1 29.2 7.3 7.163 -1.063
8 10 29.8 7.45 7.375 2.625
9 8.2 30.2 7.55 7.500 0.700
10 5.5 31.2 7.8 7.675 -2.175
11 6.5 31.9 7.975 7.888 -1.388
12 11 32.9 8.225 8.100 2.900
13 8.9 33.7 8.425 8.325 0.575
14 6.5 33.9 8.475 8.450 -1.950
15 7.3
16 11.2

Найдем
оценки сезонной компоненты как разность между фактическими уровнями ряда и
центрированными скользящими среднеми. Используем эти оценки для расчета
значений сезонной компоненты

. Для этого найдем средние
за каждый квартал (по всем годам) оценки сезонной компоненты

:

В моделях
с сезонной компонентой обычно предполагается, что сезонные воздействия за
период взаимопогашаются. В аддитивной модели это выражается в том, что сумма
значений сезонной компоненты по всем кварталам должны быть равна нулю.

Для данной
модели имеем:

Корректирующий
коэффициент:

Рассчитываем
скорректированные значения сезонной компоненты

 и заносим полученные данные в таблицу.

Проверим
равенство нулю суммы значений сезонной компоненты:

Исключим  влияние сезонной компоненты, вычитая ее
значения из каждого уровня исходного временного ряда. Получим величины

. Эти значения
рассчитываются за каждый момент времени и содержат только тенденцию и случайную
компоненту.

Определим
компоненту

 данной модели. Для этого проведем
аналитическое выравнивание ряда

 с помощью линейного тренда. Результаты
аналитического выравнивания следующие:

Подставляя
в это уравнение значения

, найдем уровни

 для каждого момента времени

Найлем
значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к
уровням

 значения сезонной компоненты для
соответствующих кварталов.

На одном
графике отложим фактические значения уровней временного ряда и теоретические,
полученные по аддитивной модели.

Фактические и теоретические уровни

Для оценки
качества построенной модели применим сумму квадратов полученных абсолютных
ошибок:

Следовательно,
можно сказать, что аддитивная модель объясняет 99.3% общей вариации уровней
временного ряда.

3)
Прогнозное значение

 уровня временного ряда в аддитивной модели
есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты
воспользуемся уравнением тренда:

Получим:

Значения
сезонных компонент за соответствующие кварталы равны:

Таким
образом:

Шаг 4.
Определим компоненту

данной модели. Для этого проведем
аналитическое выравнивание ряда ()
с помощью линейного тренда. Результаты
аналитического выравнивания следующие:

.

Подставляя в это
уравнение значения
,
найдем уровни

для каждого момента времени (гр. 5 табл.
4.7).

Шаг 5.
Найдем значения уровней ряда, полученные
по аддитивной модели. Для этого прибавим
к уровням

значения сезонной компоненты для
соответствующих кварталов (гр. 6 табл.
4.7).

На одном графике
отложим фактические значения уровней
временного ряда и теоретические,
полученные по аддитивной модели.

Рис. 4.6.

Для оценки качества
построенной модели применим сумму
квадратов полученных абсолютных ошибок.

.

Следовательно,
можно сказать, что аддитивная модель
объясняет 97% общей вариации уровней
временного ряда количества правонарушений
по кварталам за 4 года.

Шаг 6.
Прогнозирование по аддитивной модели.
Предположим, что по нашему примеру
необходимо дать прогноз об общем объеме
правонарушений на I
и II
кварталы 2003 года. Прогнозное значение

уровня временного ряда в аддитивной
модели есть сумма трендовой и сезонной
компонент. Для определения трендовой
компоненты воспользуемся уравнением
тренда

.

Получим

;

.

Значения сезонных
компонент за соответствующие кварталы
равны:

и
.
Таким образом,

;

.

Т.е. в первые два
квартала 2003 г. следовало ожидать порядка
395 и 422 правонарушений соответственно.

Построение
мультипликативной модели рассмотрим
на данных предыдущего примера.

Шаг 1.
Методика, применяемая на этом шаге,
полностью совпадает с методикой
построения аддитивной модели.

Таблица 4.8

№ квартала,

Количество
правонарушений,

Итого за
четыре квартала

Скользящая
средняя за четыре квартала

Центрированная
скользящая средняя

Оценка
сезонной компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

1,3262

4

1015

2712

678

665,5

1,5252

5

357

2835

708,75

693,75

0,5146

6

471

2840

710

709,375

0,6640

7

992

2873

718,25

714,125

1,3891

8

1020

2757

689,25

703,75

1,4494

9

390

2757

689,25

689,25

0,5658

10

355

2642

660,5

674,875

0,5260

11

992

2713

678,25

669,375

1,4820

12

905

2812

703

690,625

1,3104

13

461

2740

685

694

0,6643

14

454

2762

690,5

687,75

0,6601

15

920

16

927

Шаг 2.
Найдем оценки сезонной компоненты как
частное от деления фактических уровней
ряда на центрированные скользящие
средние (гр. 6 табл. 4.8). Эти оценки
используются для расчета сезонной
компоненты

(табл. 4.9). Для этого найдем средние за
каждый квартал оценки сезонной компоненты
.
Так же как и в аддитивной модели считается,
что сезонные воздействия за период
взаимопогашаются. В мультипликативной
модели это выражается в том, что сумма
значений сезонной компоненты по всем
кварталам должна быть равна числу
периодов в цикле. В нашем случае число
периодов одного цикла равно 4.

Таблица 4.9

Показатели

Год

№ квартала,

I

II

III

IV

1999

1,3262

1,5252

2000

0,5146

0,6640

1,3891

1,4494

2001

0,5658

0,5260

1,4820

1,3104

2002

0,6643

0,6601

Всего
за

квартал

1,7447

1,8501

4,1973

4,2850

Средняя
оценка сезонной компоненты для
-го
квартала,

0,5816

0,6167

1,3991

1,4283

Скорректированная
сезонная компонента,

0,5779

0,6128

1,3901

1,4192

Имеем

.

Определяем
корректирующий коэффициент:

.

Скорректированные
значения сезонной компоненты

получаются при умножении ее средней
оценки

на корректирующий коэффициент
.

Проверяем условие
равенство 4 суммы значений сезонной
компоненты:

.

Шаг 3.
Разделим каждый уровень исходного ряда
на соответствующие значения сезонной
компоненты. В результате получим величины

(гр. 4 табл. 4.10), которые содержат только
тенденцию и случайную компоненту.

Таблица 4.10

1

2

3

4

5

6

7

1

375

0,5779

648,9012

654,9173

378,4767

0,9908

2

371

0,6128

605,4178

658,1982

403,3439

0,9198

3

869

1,3901

625,1349

661,4791

919,5221

0,9451

4

1015

1,4192

715,1917

664,7600

943,4274

1,0759

5

357

0,5779

617,7539

668,0409

386,0608

0,9247

6

471

0,6128

768,6031

671,3218

411,3860

1,1449

7

992

1,3901

713,6177

674,6027

937,7652

1,0578

8

1020

1,4192

718,7148

677,8836

962,0524

1,0602

9

390

0,5779

674,8572

681,1645

393,6450

0,9907

10

355

0,6128

579,3081

684,4454

419,4281

0,8464

11

992

1,3901

713,6177

687,7263

956,0083

1,0377

12

905

1,4192

637,6832

691,0072

980,6774

0,9228

13

461

0,5779

797,7159

694,2881

401,2291

1,1490

14

454

0,6128

740,8616

697,5690

427,4703

1,0621

15

920

1,3901

661,8229

700,8499

974,2515

0,9443

16

927

1,4192

653,1849

704,1308

999,3024

0,9277

Шаг 4.
Определим компоненту

в мультипликативной модели. Для этого
рассчитаем параметры линейного тренда,
используя уровни
.
В результате получим уравнение тренда:

.

Подставляя в это
уравнение значения
,
найдем уровни

для каждого момента времени (гр. 5 табл.
4.10).

Шаг 5.
Найдем уровни ряда, умножив значения

на соответствующие значения сезонной
компоненты (гр. 6 табл. 4.10). На одном
графике откладываем фактические значения
уровней временного ряда и теоретические,
полученные по мультипликативной модели.

Рис. 4.7.

Расчет ошибки в
мультипликативной модели производится
по формуле:

.

Для сравнения
мультипликативной модели и других
моделей временного ряда можно, по
аналогии с аддитивной моделью, использовать
сумму квадратов абсолютных ошибок
:

.

Сравнивая показатели
детерминации аддитивной и мультипликативной
моделей, делаем вывод, что они примерно
одинаково аппроксимируют исходные
данные.

Шаг 6.
Прогнозирование по мультипликативной
модели. Если предположить, что по нашему
примеру необходимо дать прогноз об
общем объеме правонарушений на I
и II
кварталы 2003 года, прогнозное значение

уровня временного ряда в мультипликативной
модели есть произведение трендовой и
сезонной компонент. Для определения
трендовой компоненты воспользуемся
уравнением тренда

.

Получим

;

.

Значения сезонных
компонент за соответствующие кварталы
равны:

и
.
Таким образом

;

.

Т.е. в первые два
квартала 2003 г. следовало ожидать порядка
409 и 436 правонарушений соответственно.

Таким образом,
аддитивная и мультипликативная модели
дают примерно одинаковый результат по
прогнозу.

15

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Имеются условные данные об объемах потребления электроэнергии yt жителями региона за 16 кварталов.

t yt t yt
1 5,6 9 8,2
2 4,7 10 5,6
3 5,2 11 6,4
4 9,1 12 10,8
5 7,0 13 9,1
6 5,1 14 6,7
7 6,0 15 7,5
8 10,2 16 11,3
Требуется:

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда.

3. Сделать прогноз на 2 квартала вперед.

Решение:

1. Рассчитаем коэффициент автокорреляции уровней ряда первого порядка, то есть между соседними уровнями ряда yt и yt-1 (лаг = 1), и измерим тесноту связи между объёмом потребления электроэнергии в текущем и предыдущем году.

Для этого составим таблицу расчётных данных.

Расчёт коэффициента автокорреляции первого порядка для временного ряда объемов потребления электроэнергии жителями региона:

t yt yt-1 Отклонение уровня ряда от среднего значения 1 Отклонение уровня ряда от среднего значения 2 Произведение отклонений от средних Квадрат отклонения уровня ряда от среднего значения 1 Квадрат отклонения уровня ряда от среднего значения 2
1 5,6
2 4,7 5,6 -2,827 -1,547 4,371911 7,990044 2,392178
3 5,2 4,7 -2,327 -2,447 5,692578 5,413378 5,986178
4 9,1 5,2 1,573 -1,947 -3,06276 2,475378 3,789511
5 7 9,1 -0,527 1,953 -1,02876 0,277378 3,815511
6 5,1 7 -2,427 -0,147 0,355911 5,888711 0,021511
7 6 5,1 -1,527 -2,047 3,124578 2,330711 4,188844
8 10,2 6 2,673 -1,147 -3,06542 7,146711 1,314844
9 8,2 10,2 0,673 3,053 2,055911 0,453378 9,322844
10 5,6 8,2 -1,927 1,053 -2,02942 3,712044 1,109511
11 6,4 5,6 -1,127 -1,547 1,742578 1,269378 2,392178
12 10,8 6,4 3,273 -0,747 -2,44409 10,71471 0,557511
13 9,1 10,8 1,573 3,653 5,747911 2,475378 13,34684
14 6,7 9,1 -0,827 1,953 -1,61476 0,683378 3,815511
15 7,5 6,7 -0,027 -0,447 0,011911 0,000711 0,199511
16 11,3 7,5 3,773 0,353 1,333244 14,23804 0,124844
Итого 112,9 107,2 11,19133 65,06933 52,37733

Рассчитаем выборочные средние:

Формула выборочной средней 1

Формула выборочной средней 2

Определим коэффициент автокорреляции уровней ряда первого порядка:

Формула и расчёт коэффициента автокорреляции уровней ряда первого порядка

Полученное значение свидетельствует об очень слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней.

Рассчитаем коэффициент автокорреляции 2-го порядка.

t yt yt-2 Отклонение уровня ряда от среднего значения 3 Отклонение уровня ряда от среднего значения 4 Произведение отклонений от средних Квадрат отклонения уровня ряда от среднего значения 3 Квадрат отклонения уровня ряда от среднего значения 4
1 5,6
2 4,7
3 5,2 5,6 -2,529 -1,521 3,847041 6,393673 2,314745
4 9,1 4,7 1,371 -2,421 -3,32082 1,880816 5,863316
5 7 5,2 -0,729 -1,921 1,399898 0,530816 3,691888
6 5,1 9,1 -2,629 1,979 -5,20082 6,909388 3,914745
7 6 7 -1,729 -0,121 0,209898 2,987959 0,014745
8 10,2 5,1 2,471 -2,021 -4,99582 6,107959 4,086173
9 8,2 6 0,471 -1,121 -0,52867 0,222245 1,257602
10 5,6 10,2 -2,129 3,079 -6,55296 4,530816 9,477602
11 6,4 8,2 -1,329 1,079 -1,43296 1,765102 1,163316
12 10,8 5,6 3,071 -1,521 -4,67296 9,433673 2,314745
13 9,1 6,4 1,371 -0,721 -0,98939 1,880816 0,520459
14 6,7 10,8 -1,029 3,679 -3,78367 1,057959 13,53189
15 7,5 9,1 -0,229 1,979 -0,45224 0,052245 3,914745
16 11,3 6,7 3,571 -0,421 -1,5051 12,7551 0,177602
Итого 108,2 99,7 -27,9786 56,50857 52,24357

Выборочные средние:

Формула выборочной средней 3

Формула выборочной средней 4

Коэффициент автокорреляции уровней ряда первого порядка:

Коэффициент автокорреляции уровней ряда второго порядка

Продолжив расчёты аналогичным образом, получим автокорреляционную функцию этого ряда. Её значения приведены в таблице:

Лаг Коэффициент автокорреляции уровней
1 0,1917
2 -0,5149
3 0,1272
4 0,9862
5 0,1448
6 -0,6487
7 -0,00647
8 0,9632

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде линейной тенденции и сезонных колебаний периодичностью в 4 квартала.

2. Построим аддитивную модель временного ряда.
Общий вид аддитивной модели следующий:
Y = T + S + E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты аддитивной модели временного ряда.
Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1) просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (гр. 3);

2) разделив полученные суммы на 4, найдём скользящие средние (гр. 4). Отметим, что полученные таким образом выравненные значения уже не содержат сезонной компоненты;

3) приведём эти значения в соответствие с фактическими моментами времени, для чего найдём средние значения из двух последовательных скользящих средних – центрированные скользящие средние  (гр.5).

Расчёт оценок сезонной компоненты в аддитивной модели

Расчёт скользящей средней

Шаг 2. Рассчитаем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6). Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты Si. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Расчёт значений сезонной компоненты:

Показатели Год № квартала, i
I II III IV
  1 -1,125 2,55
2 0,3 -1,8375 -1,225 2,7625
3 0,65 -2,075 -1,4625 2,6875
4 0,7125 -1,8875
Итого за i-й квартал   1,6625 -5,8 -3,8125 8
Средняя оценка сезонной компоненты для i-го квартала, Средняя оценка сезонной компоненты   0,554167 -1,93333 -1,27083 2,666667
Скорректированная сезонная компонента, Si   0,55 -1,9375 -1,275 2,6625

Для данной модели имеем:

0,554167 + ( -1,93333) + (-1,27083) + 2,666667 = 0,016667

Определим корректирующий коэффициент:

k = 0,016667 / 4 = 0,004167

Рассчитаем скорректированные значения сезонной компоненты как разность между её средней оценкой и корректирующим коэффициентом k:

Формула скорректированного значения сезонной компоненты

Проверим условие равенство нулю суммы значений сезонной компоненты:

0,55 + (-1,9375) + (-1,275) + 2,6625 = 0

Таким образом, получены следующие значения сезонной компоненты:

I квартал: S= 0,55;

II квартал: S2 = -1,9375;

III квартал: S3 = -1,275;

IV квартал: S= 2,6625.

Занесём полученные значения в таблицу для соответствующих кварталов каждого года (гр. 3).

t yt Si T + E = yt – Si T T + S E = yt – (T + S) E2
1 2 3 4 5 6 7 8
1 5,6 0,55 5,05 5,8588235 6,408824 -0,80882 0,654196
2 4,7 -1,9375 6,6375 6,0651471 4,127647 0,572353 0,327588
3 5,2 -1,275 6,475 6,2714706 4,996471 0,203529 0,041424
4 9,1 2,6625 6,4375 6,4777941 9,140294 -0,04029 0,001624
5 7 0,55 6,45 6,6841176 7,234118 -0,23412 0,054811
6 5,1 -1,9375 7,0375 6,8904412 4,952941 0,147059 0,021626
7 6 -1,275 7,275 7,0967647 5,821765 0,178235 0,031768
8 10,2 2,6625 7,5375 7,3030882 9,965588 0,234412 0,054949
9 8,2 0,55 7,65 7,5094118 8,059412 0,140588 0,019765
10 5,6 -1,9375 7,5375 7,7157353 5,778235 -0,17824 0,031768
11 6,4 -1,275 7,675 7,9220588 6,647059 -0,24706 0,061038
12 10,8 2,6625 8,1375 8,1283824 10,79088 0,009118 8,31E-05
13 9,1 0,55 8,55 8,3347059 8,884706 0,215294 0,046352
14 6,7 -1,9375 8,6375 8,5410294 6,603529 0,096471 0,009307
15 7,5 -1,275 8,775 8,7473529 7,472353 0,027647 0,000764
16 11,3 2,6625 8,6375 8,9536765 11,61618 -0,31618 0,099968

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины T + E = Y — S (гр. 4 табл.). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:

T = 5,6525 + 0,206 * t

Подставляя в это уравнение значения t = 1,…,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням T значения сезонной компоненты для соответствующих кварталов (гр. 6 табл.).
Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.
Коэффициент детерминации.

Формула коэффициента детерминации

t yt Е2 Квадрат отклонения уровня ряда от среднего значения
1 5,6 0,654196 3,262539
2 4,7 0,327588 7,323789
3 5,2 0,041424 4,867539
4 9,1 0,001624 2,868789
5 7 0,054811 0,165039
6 5,1 0,021626 5,318789
7 6 0,031768 1,977539
8 10,2 0,054949 7,805039
9 8,2 0,019765 0,630039
10 5,6 0,031768 3,262539
11 6,4 0,061038 1,012539
12 10,8 8,31E-05 11,51754
13 9,1 0,046352 2,868789
14 6,7 0,009307 0,498789
15 7,5 0,000764 0,008789
16 11,3 0,099968 15,16129
Итого 118,5 1,457029 68,549

Рассчитаем коэффициент детерминации.

 Расчёт коэффициента детерминации

Следовательно, можно сказать, что аддитивная модель объясняет 97,9% общей вариации уровней временного ряда.

Далее необходимо провести проверку адекватности модели данным наблюдения. Воспользуемся F-критерием Фишера:

Формула и расчёт F-критерия Фишера

где m — количество факторов в уравнении тренда (m=1).

Табличное значение F-критерия Фишера при уровне значимости α = 0,05,

k= m = 1, k2 = n — m — 1 = 14, 

Fтабл = 4,60

Поскольку F > Fтабл, то уравнение статистически значимо, надёжно.

Шаг 6. Прогнозирование по аддитивной модели.

Прогнозное значение Ft уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:

T = 5,6525 + 0,206 × t

Прогноз на 1 период:

T17 = 5,6525 + 0,206 × 17 = 9,16

Значение сезонного компонента за соответствующий период равно:

S1 = 0,55

Таким образом,

F17 = T17 + S1 = 9,16 + 0,55 = 9,71

Прогноз на 2 период:

T18 = 5,6525 + 0,206 × 18 = 9,366

Значение сезонной компоненты за соответствующий период равно:

S2 = – 1,9375

Таким образом, прогнозное значение на 2 квартала вперёд составит:

F18 = T18 + S2 = 9,366 – 1,9375 = 7,429

t

yt

Si

T
+
E
=

=
yt
Si

T

T
+
S

E
=
yt
– (
T
+
S)

E2

1

2

3

4

5

6

7

8

1

52

0,188

51,813

47,938

48,125

3,875

15,016

2

66

16,771

49,229

50,546

67,317

-1,317

1,734

3

50

3,354

46,646

53,154

56,508

-6,508

42,358

4

30

-20,313

50,313

55,763

35,450

-5,450

29,703

5

62

0,188

61,813

58,371

58,558

3,442

11,845

6

75

16,771

58,229

60,979

77,750

-2,750

7,563

7

68

3,354

64,646

63,588

66,942

1,058

1,120

8

48

-20,313

68,313

66,196

45,883

2,117

4,480

9

72

0,188

71,813

68,804

68,992

3,008

9,050

10

96

16,771

79,229

71,413

88,183

7,817

61,100

11

83

3,354

79,646

74,021

77,375

5,625

31,641

12

58

-20,313

78,313

76,629

56,317

1,683

2,834

13

72

0,188

71,813

79,238

79,425

-7,425

55,131

14

94

16,771

77,229

81,846

98,617

-4,617

21,314

15

90

3,354

86,646

84,454

87,808

2,192

4,803

16

64

-20,313

84,313

87,063

66,750

-2,750

7,563

Сумма

0

315,253

Шаг
6.
Найдем значения уровней ряда,
полученные по аддитивной модели. Для
этого прибавим к уровнямTзначения сезонной компоненты. Графически
значения (T+S)
представлены на рисунке 3.2.

Шаг
7.
Для аддитивной модели расчет
абсолютной ошибки производится по
формулеE=Y– (T+S).

Численные
значения абсолютных ошибок приведены
в таблице 3.6 столбец 7.

Для
оценки качества построения модели или
для выбора наилучшей модели можно
применять сумму квадратов полученных
абсолютных ошибок. Для данной аддитивной
модели сумма квадратов абсолютных
ошибок:.
По отношению к общей сумме квадратов
отклонений уровней ряда от его среднего
уровня,
эта величина составляет 6,5%:

Следовательно,
можно сказать, что аддитивная модель
объясняет 100 – 6,5 = 93,5 % общей вариации
уровней временного ряда товарооборота
компании за последние 16 кварталов.

Рис.
3.2. Товарооборот компании

5.
Построиммультипликативную модельвременного ряда

Y=TּSּE.

Шаг
1
ишаг 2мультипликативной модели
полностью совпадает с шагом 1 и 2 аддитивной
модели.

Шаг
3.
Найдем оценки сезонной компоненты
какчастноеот деления фактических
уровней (таблица 3.7 столбец 2) ряда на
центрированные скользящие средние
(таблица 3.7 столбец 5). Полученные оценки
запишем в таблицу 3.7 столбец 6.

Построим
новую таблицу 3.8. Последовательно занесем
полученные в таблице 3.7 оценки сезонной
компоненты в строки таблицы 3.8. Просуммируем
по каждому кварталу и найдем средние
за каждый квартал оценки сезонной
компоненты –
.

Взаимопогашаемость
сезонных колебаний в мультипликативной
модели выражается в том, что сумма
значений сезонной компоненты должна
быть равна числу периодов в цикле. В
нашем случае число периодов одного
цикла (года) равно 4 (четыре квартала).

Имеем:
1,004 + 1,226 + 1,038 + 0,673 = 3,942.

Т.
к. сумма не равна четырем, ее нужно
корректировать. Рассчитаем корректирующий
коэффициент k:k= 4 / 3,942 = 1,015.

Определим
скорректированные значения сезонной
компоненты, умножив ее средние оценки
на корректирующий коэффициент k.

Таблица
3.7

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Имеются условные данные об объемах потребления электроэнергии yt жителями региона за 16 кварталов.

t yt t yt
1 5,6 9 8,2
2 4,7 10 5,6
3 5,2 11 6,4
4 9,1 12 10,8
5 7,0 13 9,1
6 5,1 14 6,7
7 6,0 15 7,5
8 10,2 16 11,3
Требуется:

1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.

2. Построить аддитивную модель временного ряда.

3. Сделать прогноз на 2 квартала вперед.

Решение:

1. Рассчитаем коэффициент автокорреляции уровней ряда первого порядка, то есть между соседними уровнями ряда yt и yt-1 (лаг = 1), и измерим тесноту связи между объёмом потребления электроэнергии в текущем и предыдущем году.

Для этого составим таблицу расчётных данных.

Расчёт коэффициента автокорреляции первого порядка для временного ряда объемов потребления электроэнергии жителями региона:

t yt yt-1 Отклонение уровня ряда от среднего значения 1 Отклонение уровня ряда от среднего значения 2 Произведение отклонений от средних Квадрат отклонения уровня ряда от среднего значения 1 Квадрат отклонения уровня ряда от среднего значения 2
1 5,6
2 4,7 5,6 -2,827 -1,547 4,371911 7,990044 2,392178
3 5,2 4,7 -2,327 -2,447 5,692578 5,413378 5,986178
4 9,1 5,2 1,573 -1,947 -3,06276 2,475378 3,789511
5 7 9,1 -0,527 1,953 -1,02876 0,277378 3,815511
6 5,1 7 -2,427 -0,147 0,355911 5,888711 0,021511
7 6 5,1 -1,527 -2,047 3,124578 2,330711 4,188844
8 10,2 6 2,673 -1,147 -3,06542 7,146711 1,314844
9 8,2 10,2 0,673 3,053 2,055911 0,453378 9,322844
10 5,6 8,2 -1,927 1,053 -2,02942 3,712044 1,109511
11 6,4 5,6 -1,127 -1,547 1,742578 1,269378 2,392178
12 10,8 6,4 3,273 -0,747 -2,44409 10,71471 0,557511
13 9,1 10,8 1,573 3,653 5,747911 2,475378 13,34684
14 6,7 9,1 -0,827 1,953 -1,61476 0,683378 3,815511
15 7,5 6,7 -0,027 -0,447 0,011911 0,000711 0,199511
16 11,3 7,5 3,773 0,353 1,333244 14,23804 0,124844
Итого 112,9 107,2 11,19133 65,06933 52,37733

Рассчитаем выборочные средние:

Формула выборочной средней 1

Формула выборочной средней 2

Определим коэффициент автокорреляции уровней ряда первого порядка:

Формула и расчёт коэффициента автокорреляции уровней ряда первого порядка

Полученное значение свидетельствует об очень слабой зависимости текущих уровней ряда от непосредственно им предшествующих уровней.

Рассчитаем коэффициент автокорреляции 2-го порядка.

t yt yt-2 Отклонение уровня ряда от среднего значения 3 Отклонение уровня ряда от среднего значения 4 Произведение отклонений от средних Квадрат отклонения уровня ряда от среднего значения 3 Квадрат отклонения уровня ряда от среднего значения 4
1 5,6
2 4,7
3 5,2 5,6 -2,529 -1,521 3,847041 6,393673 2,314745
4 9,1 4,7 1,371 -2,421 -3,32082 1,880816 5,863316
5 7 5,2 -0,729 -1,921 1,399898 0,530816 3,691888
6 5,1 9,1 -2,629 1,979 -5,20082 6,909388 3,914745
7 6 7 -1,729 -0,121 0,209898 2,987959 0,014745
8 10,2 5,1 2,471 -2,021 -4,99582 6,107959 4,086173
9 8,2 6 0,471 -1,121 -0,52867 0,222245 1,257602
10 5,6 10,2 -2,129 3,079 -6,55296 4,530816 9,477602
11 6,4 8,2 -1,329 1,079 -1,43296 1,765102 1,163316
12 10,8 5,6 3,071 -1,521 -4,67296 9,433673 2,314745
13 9,1 6,4 1,371 -0,721 -0,98939 1,880816 0,520459
14 6,7 10,8 -1,029 3,679 -3,78367 1,057959 13,53189
15 7,5 9,1 -0,229 1,979 -0,45224 0,052245 3,914745
16 11,3 6,7 3,571 -0,421 -1,5051 12,7551 0,177602
Итого 108,2 99,7 -27,9786 56,50857 52,24357

Выборочные средние:

Формула выборочной средней 3

Формула выборочной средней 4

Коэффициент автокорреляции уровней ряда первого порядка:

Коэффициент автокорреляции уровней ряда второго порядка

Продолжив расчёты аналогичным образом, получим автокорреляционную функцию этого ряда. Её значения приведены в таблице:

Лаг Коэффициент автокорреляции уровней
1 0,1917
2 -0,5149
3 0,1272
4 0,9862
5 0,1448
6 -0,6487
7 -0,00647
8 0,9632

Анализ значений автокорреляционной функции позволяет сделать вывод о наличии в изучаемом временном ряде линейной тенденции и сезонных колебаний периодичностью в 4 квартала.

2. Построим аддитивную модель временного ряда.
Общий вид аддитивной модели следующий:
Y = T + S + E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты аддитивной модели временного ряда.
Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1) просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объёмы потребления электроэнергии (гр. 3);

2) разделив полученные суммы на 4, найдём скользящие средние (гр. 4). Отметим, что полученные таким образом выравненные значения уже не содержат сезонной компоненты;

3) приведём эти значения в соответствие с фактическими моментами времени, для чего найдём средние значения из двух последовательных скользящих средних – центрированные скользящие средние  (гр.5).

Расчёт оценок сезонной компоненты в аддитивной модели

Расчёт скользящей средней

Шаг 2. Рассчитаем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6). Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты Si. В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Расчёт значений сезонной компоненты:

Показатели Год № квартала, i
I II III IV
  1 -1,125 2,55
2 0,3 -1,8375 -1,225 2,7625
3 0,65 -2,075 -1,4625 2,6875
4 0,7125 -1,8875
Итого за i-й квартал   1,6625 -5,8 -3,8125 8
Средняя оценка сезонной компоненты для i-го квартала, Средняя оценка сезонной компоненты   0,554167 -1,93333 -1,27083 2,666667
Скорректированная сезонная компонента, Si   0,55 -1,9375 -1,275 2,6625

Для данной модели имеем:

0,554167 + ( -1,93333) + (-1,27083) + 2,666667 = 0,016667

Определим корректирующий коэффициент:

k = 0,016667 / 4 = 0,004167

Рассчитаем скорректированные значения сезонной компоненты как разность между её средней оценкой и корректирующим коэффициентом k:

Формула скорректированного значения сезонной компоненты

Проверим условие равенство нулю суммы значений сезонной компоненты:

0,55 + (-1,9375) + (-1,275) + 2,6625 = 0

Таким образом, получены следующие значения сезонной компоненты:

I квартал: S= 0,55;

II квартал: S2 = -1,9375;

III квартал: S3 = -1,275;

IV квартал: S= 2,6625.

Занесём полученные значения в таблицу для соответствующих кварталов каждого года (гр. 3).

t yt Si T + E = yt – Si T T + S E = yt – (T + S) E2
1 2 3 4 5 6 7 8
1 5,6 0,55 5,05 5,8588235 6,408824 -0,80882 0,654196
2 4,7 -1,9375 6,6375 6,0651471 4,127647 0,572353 0,327588
3 5,2 -1,275 6,475 6,2714706 4,996471 0,203529 0,041424
4 9,1 2,6625 6,4375 6,4777941 9,140294 -0,04029 0,001624
5 7 0,55 6,45 6,6841176 7,234118 -0,23412 0,054811
6 5,1 -1,9375 7,0375 6,8904412 4,952941 0,147059 0,021626
7 6 -1,275 7,275 7,0967647 5,821765 0,178235 0,031768
8 10,2 2,6625 7,5375 7,3030882 9,965588 0,234412 0,054949
9 8,2 0,55 7,65 7,5094118 8,059412 0,140588 0,019765
10 5,6 -1,9375 7,5375 7,7157353 5,778235 -0,17824 0,031768
11 6,4 -1,275 7,675 7,9220588 6,647059 -0,24706 0,061038
12 10,8 2,6625 8,1375 8,1283824 10,79088 0,009118 8,31E-05
13 9,1 0,55 8,55 8,3347059 8,884706 0,215294 0,046352
14 6,7 -1,9375 8,6375 8,5410294 6,603529 0,096471 0,009307
15 7,5 -1,275 8,775 8,7473529 7,472353 0,027647 0,000764
16 11,3 2,6625 8,6375 8,9536765 11,61618 -0,31618 0,099968

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины T + E = Y — S (гр. 4 табл.). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:

T = 5,6525 + 0,206 * t

Подставляя в это уравнение значения t = 1,…,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням T значения сезонной компоненты для соответствующих кварталов (гр. 6 табл.).
Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.
Коэффициент детерминации.

Формула коэффициента детерминации

t yt Е2 Квадрат отклонения уровня ряда от среднего значения
1 5,6 0,654196 3,262539
2 4,7 0,327588 7,323789
3 5,2 0,041424 4,867539
4 9,1 0,001624 2,868789
5 7 0,054811 0,165039
6 5,1 0,021626 5,318789
7 6 0,031768 1,977539
8 10,2 0,054949 7,805039
9 8,2 0,019765 0,630039
10 5,6 0,031768 3,262539
11 6,4 0,061038 1,012539
12 10,8 8,31E-05 11,51754
13 9,1 0,046352 2,868789
14 6,7 0,009307 0,498789
15 7,5 0,000764 0,008789
16 11,3 0,099968 15,16129
Итого 118,5 1,457029 68,549

Рассчитаем коэффициент детерминации.

 Расчёт коэффициента детерминации

Следовательно, можно сказать, что аддитивная модель объясняет 97,9% общей вариации уровней временного ряда.

Далее необходимо провести проверку адекватности модели данным наблюдения. Воспользуемся F-критерием Фишера:

Формула и расчёт F-критерия Фишера

где m — количество факторов в уравнении тренда (m=1).

Табличное значение F-критерия Фишера при уровне значимости α = 0,05,

k= m = 1, k2 = n — m — 1 = 14, 

Fтабл = 4,60

Поскольку F > Fтабл, то уравнение статистически значимо, надёжно.

Шаг 6. Прогнозирование по аддитивной модели.

Прогнозное значение Ft уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:

T = 5,6525 + 0,206 × t

Прогноз на 1 период:

T17 = 5,6525 + 0,206 × 17 = 9,16

Значение сезонного компонента за соответствующий период равно:

S1 = 0,55

Таким образом,

F17 = T17 + S1 = 9,16 + 0,55 = 9,71

Прогноз на 2 период:

T18 = 5,6525 + 0,206 × 18 = 9,366

Значение сезонной компоненты за соответствующий период равно:

S2 = – 1,9375

Таким образом, прогнозное значение на 2 квартала вперёд составит:

F18 = T18 + S2 = 9,366 – 1,9375 = 7,429

Автокорреляционная функция и аддитивная модель временного ряда

Краткая теория


При
наличии во временном ряде тенденции и циклических колебаний значения каждого
последующего уровня ряда зависят от предыдущих.
Корреляционную зависимость между последовательными уровнями временного ряда
называют автокорреляцией уровней ряда. Количественно ее можно измерить с
помощью линейного коэффициента корреляции между уровнями исходного временного ряда
и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Число
периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом.
С увеличением лага число пар значений, по которым рассчитывается коэффициент
автокорреляции, уменьшается. Некоторые авторы считают целесообразным для
обеспечения статистической достоверности коэффициентов автокорреляции
использовать правило – максимальный лаг должен быть не больше

.

Отметим
два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии
с линейным коэффициентом корреляции и таким образом характеризует тесноту
только линейной связи текущего и предыдущего уровней ряда. Поэтому по
коэффициенту автокорреляции можно судить о наличии линейной (или близкой к
линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную
тенденцию (например, параболу второго порядка или экспоненту), коэффициент
автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых,
по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или
убывающей тенденции в уровнях ряда. Большинство временных рядов экономических
данных содержит положительную автокорреляцию уровней, однако при этом могут
иметь убывающую тенденцию.

Последовательность
коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют
автокорреляционной функцией временного рада. График зависимости ее значений от
величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ
автокорреляционной функции и коррелограммы позволяет
определить лаг, при котором автокорреляция наиболее высокая, а
следовательно, и лаг, при котором связь между текущим и предыдущими уровнями
ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если
наиболее высоким оказался коэффициент автокорреляции первого порядка,
исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался
коэффициент автокорреляции порядка

, ряд содержит
циклические колебания с периодичностью в

 моментов времени.
Если ни один из коэффициентов автокорреляции не является значимым, можно
сделать одно из двух предположений относительно структуры этого ряда: либо ряд
не содержит тенденции и циклических колебаний, либо ряд содержит сильную
нелинейную тенденцию, для выявления которой нужно провести дополнительный
анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию
целесообразно использовать для выявления во временном ряде наличия или
отсутствия трендовой компоненты (

)
и
циклической (сезонной) компоненты (

).

Существует несколько подходов к
анализу структуры временных рядов, содержащих сезонные или циклические
колебания. Простейший подход — расчет значений сезонной компоненты методом
скользящей средней и построение аддитивной или мультипликативной модели
временного ряда. Общий вид аддитивной модели следующий:

Эта модель
предполагает, что каждый уровень временного ряда может быть представлен как
сумма трендовой

,
сезонной

 и случайной

 компонент. Общий вид
мультипликативный модели выглядит так:

Эта модель
предполагает, что каждый уровень временного ряда может быть представлен как
произведение трендовой

,
сезонной

 и случайной

 компонент. Выбор одной из двух моделей
осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда
колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в
которой значения сезонной компоненты предполагаются постоянными для различных
циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят
мультипликативную модель временного ряда, которая ставит уровни ряда в
зависимость от значений сезонной компоненты.

Построение аддитивной и
мультипликативной моделей сводится к расчету значений

 и

 для каждого уровня ряда.

Процесс построения
модели включает в себя следующие шаги.

1. Выравнивание
исходного ряда методом скользящей средней.

2. Расчет значений
сезонной компоненты

.

3. Устранение сезонной
компоненты из исходных уровней ряда и получение выравненных данных

 в аддитивной или

 в мультипликативной модели.

4. Аналитическое
выравнивание уровней

 или

 и расчет значений

 с использованием полученного уравнения тренда.

5. Расчет полученных по
модели значений

 или

.

6. Расчет абсолютных
и/или относительных ошибок.

Если полученные
значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни
ряда и в дальнейшем использовать временной ряд ошибок

 для анализа взаимосвязи исходного ряда и
других временных рядов.

Пример решения задачи


Задача

Имеются
условные данные об объемах потребления электроэнергии

 жителями региона за 16 кварталов.

Требуется:

1.
Построить автокорреляционную функцию и сделать вывод о наличии сезонных
колебаний.

2.
Построить аддитивную модель временного ряда (для нечетных вариантов) или
мультипликативную модель временного ряда (для четных вариантов).

3.
Сделать прогноз на 2 квартала вперед.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

1) Построим поле корреляции:

Поле корреляции

Уже
исходя из графика видно, что значения

 образуют пилообразную фигуру. Рассчитаем несколько
последовательных коэффициентов автокорреляции. Для этого составляем первую
вспомогательную таблицу:

Следует
заметить. что среднее
значение получается путем деления не на 16, а на 15, так как у нас теперь на
одно наблюдение меньше.

Коэффициент
автокорреляции первого порядка:

Составляем
вспомогательную таблицу для расчета коэффициента автокорреляции второго
порядка:

Следовательно:

Аналогично
находим коэффициенты автокорреляции более высоких порядков, а все полученные
значения заносим в сводную таблицу:

Коэффициенты автокорреляции

Лаг Коэффициент
автокорреляции уровней
1 0.180
2 -0.542
3 0.129
4 0.980
5 0.987
6 -0.686
7 0.019
8 0.958
9 0.117
10 -0.707
11 -0.086
12 0.937

Коррелограмма

Анализ
коррелограммы и графика исходных уровней временного
ряда позволяет сделать выводы о наличии в изучаемом временном ряде сезонных
колебаний периодичностью в четыре квартала.

2)  Проведем выравнивание исходных уровней ряда
методом скользящей средней. Для этого:

Просуммируем
уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент
времени и определим условные годовые объемы потребления электроэнергии.

Разделив
полученные суммы на 4, найдем скользящие средние. Полученные таким образом
выровненные значения уже не содержат сезонной компоненты.

Приведем
эти значения в соответствие с фактическими моментами времени, для чего найдем
средние значения из двух последовательных скользящих средних – центрированные
скользящие средние.

Расчет сезонной компоненты

Итого за четыре квартала Скользящая средняя за
четыре квартала
Центрированая скользящая
средняя
Оценка сезонной
компоненты
1 5.5
2 4.8 24.4 6.1
3 5.1 26 6.5 6.300 -1.200
4 9 26.1 6.525 6.513 2.488
5 7.1 27.1 6.775 6.650 0.450
6 4.9 28.1 7.025 6.900 -2.000
7 6.1 29.2 7.3 7.163 -1.063
8 10 29.8 7.45 7.375 2.625
9 8.2 30.2 7.55 7.500 0.700
10 5.5 31.2 7.8 7.675 -2.175
11 6.5 31.9 7.975 7.888 -1.388
12 11 32.9 8.225 8.100 2.900
13 8.9 33.7 8.425 8.325 0.575
14 6.5 33.9 8.475 8.450 -1.950
15 7.3
16 11.2

Найдем
оценки сезонной компоненты как разность между фактическими уровнями ряда и
центрированными скользящими среднеми. Используем эти оценки для расчета
значений сезонной компоненты

. Для этого найдем средние
за каждый квартал (по всем годам) оценки сезонной компоненты

:

В моделях
с сезонной компонентой обычно предполагается, что сезонные воздействия за
период взаимопогашаются. В аддитивной модели это выражается в том, что сумма
значений сезонной компоненты по всем кварталам должны быть равна нулю.

Для данной
модели имеем:

Корректирующий
коэффициент:

Рассчитываем
скорректированные значения сезонной компоненты

 и заносим полученные данные в таблицу.

Проверим
равенство нулю суммы значений сезонной компоненты:

Исключим  влияние сезонной компоненты, вычитая ее
значения из каждого уровня исходного временного ряда. Получим величины

. Эти значения
рассчитываются за каждый момент времени и содержат только тенденцию и случайную
компоненту.

Определим
компоненту

 данной модели. Для этого проведем
аналитическое выравнивание ряда

 с помощью линейного тренда. Результаты
аналитического выравнивания следующие:

Подставляя
в это уравнение значения

, найдем уровни

 для каждого момента времени

Найлем
значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к
уровням

 значения сезонной компоненты для
соответствующих кварталов.

На одном
графике отложим фактические значения уровней временного ряда и теоретические,
полученные по аддитивной модели.

Фактические и теоретические уровни

Для оценки
качества построенной модели применим сумму квадратов полученных абсолютных
ошибок:

Следовательно,
можно сказать, что аддитивная модель объясняет 99.3% общей вариации уровней
временного ряда.

3)
Прогнозное значение

 уровня временного ряда в аддитивной модели
есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты
воспользуемся уравнением тренда:

Получим:

Значения
сезонных компонент за соответствующие кварталы равны:

Таким
образом:

Простейший подход к моделированию сезонных колебаний – это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

. (2.14)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.

Общий вид мультипликативной модели выглядит так:

. (2.15)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1) Выравнивание исходного ряда методом скользящей средней.

2) Расчет значений сезонной компоненты .

3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.

4) Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.

5) Расчет полученных по модели значений () или ().

6) Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

Методику построения аддитивной модели рассмотрим в данном разделе методического пособия.

Пример. Построение аддитивной модели временного ряда. Обратимся к данным об объеме правонарушений на таможне за четыре года, представленным в табл. 2.1.

Как видно из табл. 2.1, данный временной ряд содержит сезонные колебания периодичностью 4, т. к. количество правонарушений в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда.

Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:

1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 2.2).

Таблица 2.1

Год

Квартал

Количество возбужденных дел,

1999

I

1

375

II

2

371

III

3

869

IV

4

1015

2000

I

5

357

II

6

471

III

7

992

IV

8

1020

2001

I

9

390

II

10

355

III

11

992

IV

12

905

2002

I

13

461

II

14

454

III

15

920

IV

16

927

1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 2.2). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.

1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 2.2).

Таблица 2.2

№ квартала,

Количество правонарушений,

Итого за четыре квартала

Скользящая средняя за четыре квартала

Центрированная скользящая средняя

Оценка сезонной компоненты

1

2

3

4

5

6

1

375

2

371

2630

657,5

3

869

2612

653

655,25

213,75

4

1015

2712

678

665,5

349,5

5

357

2835

708,75

693,75

-336,75

6

471

2840

710

709,375

-238,375

7

992

2873

718,25

714,125

277,875

8

1020

2757

689,25

703,75

316,25

9

390

2757

689,25

689,25

-299,25

10

355

2642

660,5

674,875

-319,875

11

992

2713

678,25

669,375

322,625

12

905

2812

703

690,625

214,375

13

461

2740

685

694

-233

14

454

2762

690,5

687,75

-233,75

15

920

16

927

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 2.2). Используем эти оценки для расчета значений сезонной компоненты (табл. 2.3). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 2.3

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 6.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 2.4). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 2.4).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 2.4).

Таблица 2.4

1

2

3

4

5

6

7

8

1

375

-292,448

667,448

672,700

380,252

-5,252

27,584

2

371

-266,781

637,781

673,624

406,843

-35,843

1284,721

3

869

268,636

600,364

674,547

943,183

-74,183

5503,117

4

1015

290,593

724,407

675,470

966,063

48,937

2394,830

5

357

-292,448

649,448

676,394

383,946

-26,946

726,087

6

471

-266,781

737,781

677,317

410,536

60,464

3655,895

7

992

268,636

723,364

678,240

946,876

45,124

2036,175

8

1020

290,593

729,407

679,163

969,756

50,244

2524,460

9

390

-292,448

682,448

680,087

387,639

2,361

5,574

10

355

-266,781

621,781

681,010

414,229

-59,229

3508,074

11

992

268,636

723,364

681,933

950,569

41,431

1716,528

12

905

290,593

614,407

682,857

973,450

-68,450

4685,403

13

461

-292,448

753,448

683,780

391,332

69,668

4853,630

14

454

-266,781

720,781

684,703

417,922

36,078

1301,622

15

920

268,636

651,364

685,627

954,263

-34,263

1173,953

16

927

290,593

636,407

686,550

977,143

-50,143

2514,320

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Рис. 28. График фактических уровней временного ряда

И теоретических, полученных по аддитивной модели.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,

;

.

Т. е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно. Построение мультипликативной модели проводится по той же схеме, что и построение аддитивной модели.

Вопросы для самопроверки

1. В каких случаях для прогнозирования применяют методы прямой экстраполяции?

2. Когда для прогнозирования можно использовать модель тренда?

3. Какие модели трендов обычно используются при прогнозировании в экономике?

4. Перечислите этапы прогнозирования экономических показателей с применением моделей тренда.

5. Что понимают под адекватностью и точностью модели прогнозировании? Как можно проверить адекватность и точность модели прогнозирования?

6. Поясните, почему при прогнозировании наряду с точечным прогнозом рассчитывают и интервальный прогноз?

7. Что такое коэффициент автокорреляции? Как он рассчитывается и что он показывает?

8. Для чего используется критерий Дарбина-Уотсона в моделях временных рядов?

9. Что такое коррелограмма?

10. Поясните технологию расчета точечного интервального прогнозов при использовании моделей тренда.

< Предыдущая   Следующая >

Возможно, вам также будет интересно:

  • Для косметического ремонта понадобятся шестьдесят килограммов краски ошибка
  • Для каждой исходной последовательности классического кода хэмминга 15 11 проверить имеются ли ошибки
  • Для исправления ошибок прошлых лет используется счет
  • Для исправления ошибки какую нужно нажать клавишу
  • Для исключения ошибок статистические данные проверяются следующим контролем

  • Понравилась статья? Поделить с друзьями:
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии